Multiview subspace clustering via low-rank correlation analysis

被引:0
|
作者
Kun, Qu [1 ]
Abhadiomhen, Stanley Ebhohimhen [2 ,3 ]
Liu, Zhifeng [2 ]
机构
[1] Jiangsu Univ, Jingjiang Coll, Zhenjiang, Jiangsu, Peoples R China
[2] JiangSu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Univ Nigeria, Dept Comp Sci, Nsukka, Nigeria
关键词
ALGORITHM;
D O I
10.1049/cvi2.12155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to explore multi-view data, existing low-rank-based multi-view subspace clustering methods seek a common low-rank structure from different views. However, in real-world scenarios, each view will often hold complex structures resulting from noise or outliers, causing unreliable and imprecise graphs, which the previous methods cannot effectively ameliorate. This study proposes a new method based on low-rank correlation analysis to overcome these limitations. Firstly, the canonical correlation analysis strategy is introduced to jointly find the low-rank structures in different views. In order to facilitate a robust solution, a dual regularisation term is further introduced to find such low-rank structures that maximise the correlation in respective views much better. Thus, a unifying clustering structure is then integrated into the model to characterise the connections between different views adaptively. In this way, noise suppression is achieved more effectively. Furthermore, we avoid the uncertainty of spectral post-processing of the unifying clustering structure by imposing a rank constraint on its Laplacian matrix to obtain the clustering results explicitly, further enhancing computation efficiency. Experimental results obtained from several clustering and classification experiments performed using 3Sources, Caltech101-20, 100leaves, WebKB, and Hdigit datasets reveal the proposed method's superiority over compared state-of-the-art methods in Accuracy, Normalised Mutual Information, and F-score evaluation metrics.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Low-rank sparse subspace clustering with a clean dictionary
    You, Cong-Zhe
    Shu, Zhen-Qiu
    Fan, Hong-Hui
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15
  • [32] Robust discriminant low-rank representation for subspace clustering
    Zhao, Xian
    An, Gaoyun
    Cen, Yigang
    Wang, Hengyou
    Zhao, Ruizhen
    SOFT COMPUTING, 2019, 23 (16) : 7005 - 7013
  • [33] Low-rank representation with graph regularization for subspace clustering
    Wu He
    Jim X. Chen
    Weihua Zhang
    Soft Computing, 2017, 21 : 1569 - 1581
  • [34] Sparse and low-rank regularized deep subspace clustering
    Zhu, Wenjie
    Peng, Bo
    KNOWLEDGE-BASED SYSTEMS, 2020, 204
  • [35] Latent Space Sparse and Low-Rank Subspace Clustering
    Patel, Vishal M.
    Hien Van Nguyen
    Vidal, Rene
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (04) : 691 - 701
  • [36] Robust Subspace Clustering With Low-Rank Structure Constraint
    Nie, Feiping
    Chang, Wei
    Hu, Zhanxuan
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (03) : 1404 - 1415
  • [37] Subspace clustering using a symmetric low-rank representation
    Chen, Jie
    Mao, Hua
    Sang, Yongsheng
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2017, 127 : 46 - 57
  • [38] Constrained Low-Rank Representation for Robust Subspace Clustering
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4534 - 4546
  • [39] Robust discriminant low-rank representation for subspace clustering
    Xian Zhao
    Gaoyun An
    Yigang Cen
    Hengyou Wang
    Ruizhen Zhao
    Soft Computing, 2019, 23 : 7005 - 7013
  • [40] Subspace clustering using a low-rank constrained autoencoder
    Chen, Yuanyuan
    Zhang, Lei
    Yi, Zhang
    INFORMATION SCIENCES, 2018, 424 : 27 - 38