Learning to Share Visual Appearance for Multiclass Object Detection

被引:0
|
作者
Salakhutdinov, Ruslan [1 ]
Torralba, Antonio [1 ]
Tenenbaum, Josh [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a hierarchical classification model that allows rare objects to borrow statistical strength from related objects that have many training examples. Unlike many of the existing object detection and recognition systems that treat different classes as unrelated entities, our model learns both a hierarchy for sharing visual appearance across 200 object categories and hierarchical parameters. Our experimental results on the challenging object localization and detection task demonstrate that the proposed model substantially improves the accuracy of the standard single object detectors that ignore hierarchical structure altogether.
引用
收藏
页码:1481 / 1488
页数:8
相关论文
共 50 条
  • [31] ADAPTIVE VISUAL TARGET DETECTION AND TRACKING USING INCREMENTAL APPEARANCE LEARNING
    Yazdian-Dehkordi, Mandi
    Azimifar, Zohreh
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1041 - 1045
  • [32] Autonomous Learning Of Robust Visual Object Detection And Identification On A Humanoid
    Leitner, Juergen
    Chandrashekhariah, Pramod
    Harding, Simon
    Frank, Mikhail
    Spina, Gabriele
    Foerster, Alexander
    Triesch, Jochen
    Schmidhuber, Juergen
    2012 IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING AND EPIGENETIC ROBOTICS (ICDL), 2012,
  • [33] Open Source Assessment of Deep Learning Visual Object Detection
    Paniego, Sergio
    Sharma, Vinay
    Maria Canas, Jose
    SENSORS, 2022, 22 (12)
  • [34] Visual Object Detection for Privacy-Preserving Federated Learning
    Zhang, Jing
    Zhou, Jiting
    Guo, Jinyang
    Sun, Xiaohan
    IEEE ACCESS, 2023, 11 : 33324 - 33335
  • [35] Robust appearance modeling for object detection and tracking: a survey of deep learning approaches
    Alhassan Mumuni
    Fuseini Mumuni
    Progress in Artificial Intelligence, 2022, 11 : 279 - 313
  • [36] Robust appearance modeling for object detection and tracking: a survey of deep learning approaches
    Mumuni, Alhassan
    Mumuni, Fuseini
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2022, 11 (04) : 279 - 313
  • [37] Multi-Resolution Cascades for Multiclass Object Detection
    Saberian, Mohammad
    Vasconcelos, Nuno
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [38] Learning appearance models for object recognition
    Pope, Arthur R.
    Lowe, David G.
    Lecture Notes in Computer Science, 1144
  • [39] Beyond appearance model: Learning appearance variations for object tracking
    Li, Guorong
    Ma, Bingpeng
    Huang, Jun
    Huang, Qingming
    Zhang, Weigang
    NEUROCOMPUTING, 2016, 214 : 796 - 804
  • [40] Visual appearance interacts with conceptual knowledge in object recognition
    Cheung, Olivia S.
    Gauthier, Isabel
    FRONTIERS IN PSYCHOLOGY, 2014, 5 : 1 - 11