For any 1 <= p <= infinity different from 2, we give examples of noncommutative L-p-space's without the completely bounded approximation property. Let F be a nonarchimedian local field. If p > 4 or p < 4/3 and r >= 3 these examples are the noncommutative L-p-spaces of the von Neumann algebra of lattices in SLr (F) or in SLr (R). For other values of p the examples are the noncommutative L-p-spaces of the von Neumann algebra of lattices in SLr (F) for r large enough depending on p. We also prove that if r >= 3 lattices in SLr (F) or SLr (R) do not have the approximation property of Haagerup and Kraus. This provides examples of exact C*-algebras without the operator space approximation property.
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Hong, Guixiang
Lai, Xudong
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Lai, Xudong
Xu, Bang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South KoreaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
机构:
6 Rue Didier Daurat, F-81000 Albi, France6 Rue Didier Daurat, F-81000 Albi, France
Arhancet, Cedric
Raynaud, Yves
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Univ, Univ Paris Diderot, CNRS, Inst Math Jussieu Paris Rive Gauche,IMJ PRG, F-75005 Paris, France6 Rue Didier Daurat, F-81000 Albi, France