NONCOMMUTATIVE Lp-SPACES WITHOUT THE COMPLETELY BOUNDED APPROXIMATION PROPERTY

被引:60
|
作者
Lafforgue, Vincent [1 ]
De la Salle, Mikael [2 ]
机构
[1] Univ Orleans, CNRS, UMR 6628, Lab Math Anal, F-45067 Orleans 2, France
[2] CNRS, UMR 6623, Lab Math Besancon, F-25030 Besancon, France
关键词
HERZ-SCHUR MULTIPLIERS; C-ASTERISK-ALGEBRAS; FOURIER ALGEBRA; DISCRETE-GROUPS; L(P)-SPACES; CONJECTURE;
D O I
10.1215/00127094-1443478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any 1 <= p <= infinity different from 2, we give examples of noncommutative L-p-space's without the completely bounded approximation property. Let F be a nonarchimedian local field. If p > 4 or p < 4/3 and r >= 3 these examples are the noncommutative L-p-spaces of the von Neumann algebra of lattices in SLr (F) or in SLr (R). For other values of p the examples are the noncommutative L-p-spaces of the von Neumann algebra of lattices in SLr (F) for r large enough depending on p. We also prove that if r >= 3 lattices in SLr (F) or SLr (R) do not have the approximation property of Haagerup and Kraus. This provides examples of exact C*-algebras without the operator space approximation property.
引用
收藏
页码:71 / 116
页数:46
相关论文
共 50 条