Automatic Method for Extraction of Complex Road Intersection Points From High-Resolution Remote Sensing Images Based on Fuzzy Inference

被引:13
|
作者
Dai, Jiguang [1 ,2 ]
Wang, Yang [1 ]
Li, Wantong [1 ]
Zuo, Yuqiang [3 ]
机构
[1] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
[2] Natl Adm Surveying Mapping & Geoinformat, Key Lab Natl Geog State Monitoring, Wuhan 430079, Peoples R China
[3] China Land Surveying & Planning Inst, Beijing 100000, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Roads; Image segmentation; Data mining; Remote sensing; Feature extraction; Image edge detection; Fuzzy logic; Fuzzy inference; high-resolution; multifeature; OpenStreetMap; road intersection; JUNCTION EXTRACTION; NETWORK EXTRACTION;
D O I
10.1109/ACCESS.2020.2974974
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic extracting road intersection points is essential for applications such as data registration between vector data and remote sensing images, aircraft-assisted navigation. However, at a large scale, it is difficult to quickly and accurately extract road intersection points due to the problems caused by complex structures, geometric texture noise interference. In this context, taking OpenStreetMap (OSM) data as priori knowledge, we propose a method for automatic extraction of complex road intersection points based on fuzzy inference. First, OSM data are analyzed to obtain structural information of intersection points. Local search areas are built around the intersection points. Second, within the local search area, the candidate intersection point set are generated. Meanwhile the input image is segmented using multiresolution segmentation; then we establish a fuzzy rule to infer the road area from the segmentation result. The fuzzy indexes and rules are established for the candidate intersection point set to deduce the road intersection area. Finally, based on the results of the previous step, the road intersection points are extracted based on the line segment constraint, structure matching, and linkage equation. Three sets of high-resolution remote sensing images were used to verify the feasibility of the method. We demonstrate that the correctness and positioning accuracy of this method are superior to those of other methods through contrastive analysis.
引用
收藏
页码:39212 / 39224
页数:13
相关论文
共 50 条
  • [21] Semi-Automatic Method of Extracting Road Networks from High-Resolution Remote-Sensing Images
    Yang, Kaili
    Cui, Weihong
    Shi, Shu
    Liu, Yu
    Li, Yuanjin
    Ge, Mengyu
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [22] RADANet: Road Augmented Deformable Attention Network for Road Extraction From Complex High-Resolution Remote-Sensing Images
    Dai, Ling
    Zhang, Guangyun
    Zhang, Rongting
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [23] An Improved Method for Road Extraction from High-Resolution Remote-Sensing Images that Enhances Boundary Information
    Wang, Shuai
    Yang, Hui
    Wu, Qiangqiang
    Zheng, Zhiteng
    Wu, Yanlan
    Li, Junli
    SENSORS, 2020, 20 (07)
  • [24] Method Based on Edge Constraint and Fast Marching for Road Centerline Extraction from Very High-Resolution Remote Sensing Images
    Gao, Lipeng
    Shi, Wenzhong
    Miao, Zelang
    Lv, Zhiyong
    REMOTE SENSING, 2018, 10 (06)
  • [25] Road Extraction Methods in High-Resolution Remote Sensing Images: A Comprehensive Review
    Lian, Renbao
    Wang, Weixing
    Mustafa, Nadir
    Huang, Liqin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 5489 - 5507
  • [26] Total rectangle matching approach for road extraction from high-resolution remote sensing images
    Zhu, C. Q.
    Yang, Y.
    Wang, Q. S.
    Zou, F.
    GEOINFORMATICS 2006: REMOTELY SENSED DATA AND INFORMATION, 2006, 6419
  • [27] Dual-Task Network for Road Extraction From High-Resolution Remote Sensing Images
    Lin, Yuzhun
    Jin, Fei
    Wang, Dandi
    Wang, Shuxiang
    Liu, Xiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 66 - 78
  • [28] EUNetMTL: multitask joint learning for road extraction from high-resolution remote sensing images
    Yi, Feng
    Te, Rigen
    Zhao, Yuheng
    Xu, Guocheng
    REMOTE SENSING LETTERS, 2022, 13 (03) : 258 - 268
  • [29] A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images
    Liu, Ruyi
    Wu, Junhong
    Lu, Wenyi
    Miao, Qiguang
    Zhang, Huan
    Liu, Xiangzeng
    Lu, Zixiang
    Li, Long
    REMOTE SENSING, 2024, 16 (12)
  • [30] Semi-Automatic Extraction and Mapping of Farmlands Based on High-Resolution Remote Sensing Images
    Liu, Dongsheng
    Han, Ling
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (01)