The present study investigates and evaluate the scope and potential of modern computing tools and techniques such as ensembled machine learning methods in estimating ETo. Five different type of machine learning model namely (i) decision tree, (ii) Random Forest (RF), (iii) Adaptive Boosting (AdaBoost), (iv) Gradient Boosting Machine (GBM) and (v) Extreme Gradient Boosting (XGBoost) were compared for performance in estimating daily P-M ETo values. The RF, GBM and XGBoost model performed extremely well on the criteria of weighted standard error of estimate (WSEE) which is less than 0.25 mm/d. Furthermore, the ensembled machine learning model substantiated by boosting algorithm (XGBoost) significantly enhance the performance in estimating P-M ETo (WSEE is less than 0.17 mm/d). Moreover, the sensitivity analysis suggested that the data requirement for XGBoost is commonly available at most of the places unlike P-M ETo model. Given the generalization capability of the model, it can be successfully implemented for other similar location where comprehensive data are not available.
机构:
Natl Inst Meteorol Sci, Res Applicat Dept, Seogwipo 63568, Jeju, South KoreaNatl Inst Meteorol Sci, Res Applicat Dept, Seogwipo 63568, Jeju, South Korea
Kim, Bu-Yo
Cha, Joo Wan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Meteorol Sci, Res Applicat Dept, Seogwipo 63568, Jeju, South KoreaNatl Inst Meteorol Sci, Res Applicat Dept, Seogwipo 63568, Jeju, South Korea
机构:
Department of Electronics and Communication Engineering, Khulna University, Khulna, BangladeshDepartment of Electronics and Communication Engineering, Khulna University, Khulna, Bangladesh
Mondal, Proloy Kumar
Byeon, Haewon
论文数: 0引用数: 0
h-index: 0
机构:
Department of Digital Anti-aging Healthcare (BK21), Inje University, Gimhae,50834, Korea, Republic ofDepartment of Electronics and Communication Engineering, Khulna University, Khulna, Bangladesh
机构:
Fed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, BrazilFed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, Brazil
Fontoura, Leidiane C. M. M.
De Castro Lins, Hertz Wilton
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, BrazilFed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, Brazil
De Castro Lins, Hertz Wilton
Bertuleza, Arthur S.
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, BrazilFed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, Brazil
Bertuleza, Arthur S.
D'assuncao, Adaildo Gomes
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, BrazilFed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, Brazil
D'assuncao, Adaildo Gomes
Neto, Alfredo Gomes
论文数: 0引用数: 0
h-index: 0
机构:
Fed Inst Educ Sci & Technol Paraiba IFPB, BR-58015905 Joao Pessoa, Paraiba, BrazilFed Univ Rio Grande Norte UFRN, Dept Commun Engn, BR-59078970 Natal, RN, Brazil