Piled-up neutron-gamma discrimination system for CLLB using convolutional neural network

被引:8
|
作者
Peng, S. [1 ,2 ]
Hua, Z. H. [1 ,3 ,4 ]
Wu, Q. [1 ,2 ]
Han, J. F. [5 ]
Qian, S. [1 ,3 ]
Wang, Z. G. [1 ,3 ]
Wei, Q. H. [4 ]
Qin, L. S. [4 ]
Ma, L. S. [1 ]
Yan, M. [1 ,5 ]
Song, R. Q. [1 ,5 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, 19 B Yuquan Rd, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing, Peoples R China
[3] State Key Lab Particle Detect & Elect, 19 B Yuquan Rd, Beijing, Peoples R China
[4] China Jiliang Univ, Coll Mat & Chem, 258 Xueyuan St, Hangzhou, Peoples R China
[5] Sichuan Univ, Key Lab Radiat Phys & Technol, Minist Educ, 24,Southern Sect 1,First Ring Rd, Chengdu, Peoples R China
来源
JOURNAL OF INSTRUMENTATION | 2022年 / 17卷 / 08期
关键词
Analysis and statistical methods; Neutron detectors (cold; thermal; fast neutrons); PULSE-SHAPE DISCRIMINATION; SCINTILLATION PROPERTIES; DETECTORS;
D O I
10.1088/1748-0221/17/08/T08001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A piled-up neutron-gamma discrimination system is designed to discriminate single and piled-up events under high counting rate. The data acquired by a Cs2LiLaBr6:Ce (CLLB) detector and an Am-Be neutron source are used to train and test the model in the n-gamma discrimination system. The charge comparison method is applied to discriminate the non-piled-up events in the experimental data and label the dataset of single events. As a result of the method, the figure-of-merit (FOM) value is 1.10, which indicates that the wrong labeling ratio is about 0.248%. A dataset of piled-up events is created by adding up waveforms and labels of the events in the single-pulse dataset. The discrimination system consists of three convolutional models, called Model_PulseNum, Model_OnePulse and Model_TwoPulses. All the models are trained and tested by the created dataset. Model_PulseNum is created and trained to define the number of pulses in the waveform of the event, with an accuracy of 99.94%. The other two models (Model_OnePulse and Model_TwoPulses) are created and trained to discriminate the particle types for non-piled-up and two-fold piled-up events with the accuracy of 99.5% and 98.6%, respectively. For the whole discrimination system, the accurcy for the particle identification is over 97% for each class (gamma, n, gamma + gamma, gamma + n, n + gamma and n + n). These results indicate that CNN model can improve the performance of particle detection systems by effectively discriminate neutron and gamma for both piled-up and non-piled-up events under high counting rates.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Digital neutron-gamma discrimination in a wide energy range using pulse reconstruction method
    Jamili, S.
    Bayat, E.
    Afarideh, H.
    Davani, F. Abbasi
    Ghal-Eh, N.
    RADIATION PHYSICS AND CHEMISTRY, 2015, 109 : 13 - 16
  • [22] Neutron-Gamma Pulse Shape Discrimination Using Organic Scintillators With Silicon Photomultiplier Readout
    Preston, Rhys M.
    Eberhardt, John E.
    Tickner, James R.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (04) : 2410 - 2418
  • [23] Real-Time Implementation of the Neutron/Gamma Discrimination in an FPGA-Based DAQ MTCA Platform Using a Convolutional Neural Network
    Astrain, Miguel
    Ruiz, Mariano
    Stephen, Adam, V
    Sarwar, Rashed
    Carpeno, Antonio
    Esquembri, Sergio
    Murari, Andrea
    Belli, Francesco
    Riva, Marco
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) : 2173 - 2178
  • [24] First measurement of neutron emission profile on JT-60U using Stilbene neutron detector with neutron-gamma discrimination
    Ishikawa, M
    Nishitani, T
    Morioka, A
    Takechi, M
    Shinohara, K
    Shimada, M
    Miura, Y
    Nagami, M
    Kaschuck, YA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (12): : 4237 - 4242
  • [25] Convolutional neural network-based neutron and gamma discrimination in EJ-276 for low-energy detection
    Shen, Fengzhao
    Li, Tao
    He, Jingkui
    Xie, Shenghui
    Wei, Yuehuan
    Huang, Tuchen
    Wang, Wei
    JOURNAL OF INSTRUMENTATION, 2025, 20 (02):
  • [26] Pulse-shape Discrimination of Fast Neutron Background using Convolutional Neural Network for NEOS II
    Y. Jeong
    B. Y. Han
    E. J. Jeon
    H. S. Jo
    D. K. Kim
    J. Y. Kim
    J. G. Kim
    Y. D. Kim
    Y. J. Ko
    H. M. Lee
    M. H. Lee
    J. Lee
    C. S. Moon
    Y. M. Oh
    H. K. Park
    K. S. Park
    S. H. Seo
    K. Siyeon
    G. M. Sun
    Y. S. Yoon
    I. Yu
    Journal of the Korean Physical Society, 2020, 77 : 1118 - 1124
  • [27] Pulse-shape Discrimination of Fast Neutron Background using Convolutional Neural Network for NEOS II
    Jeong, Y.
    Han, B. Y.
    Jeon, E. J.
    Jo, H. S.
    Kim, D. K.
    Kim, J. Y.
    Kim, J. G.
    Kim, Y. D.
    Ko, Y. J.
    Lee, H. M.
    Lee, M. H.
    Lee, J.
    Moon, C. S.
    Oh, Y. M.
    Park, H. K.
    Park, K. S.
    Seo, S. H.
    Siyeon, K.
    Sun, G. M.
    Yoon, Y. S.
    Yu, I.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (12) : 1118 - 1124
  • [28] Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods
    Wang, C. L.
    Riedel, R. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (01):
  • [29] Global Nuclear Explosion Discrimination Using a Convolutional Neural Network
    Barama, Louisa
    Williams, Jesse
    Newman, Andrew V.
    Peng, Zhigang
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (17)
  • [30] Neutron-gamma discrimination based on bipolar trapezoidal pulse shaping using FPGAs in NE213
    Esmaeili-sani, Vahid
    Moussavi-zarandi, Ali
    Akbar-ashrafi, Nafiseh
    Boghrati, Behzad
    Afarideh, Hossein
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 694 : 113 - 118