A Study of the Influence of Lithium Salt Anions on Oxygen Reduction Reactions in Li-Air Batteries

被引:86
|
作者
Gunasekara, Iromie [1 ]
Mukerjee, Sanjeev [1 ]
Plichta, Edward J. [2 ]
Hendrickson, Mary A. [2 ]
Abraham, K. M. [1 ]
机构
[1] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
[2] US Army, Power Div, RDECOM CERDEC CP&I, RDER CCP, Aberdeen Proving Ground, MD 21005 USA
关键词
SOLVENT; ION; MICROELECTRODE; PERMITTIVITY; PERFORMANCE; CHEMISTRY; DENSITY;
D O I
10.1149/2.0841506jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The influence of lithium salts on O-2 reduction reactions (ORR) in I. 2-dimethoxyethane (DME) and tetraethylene glycol dimethyl ether (TEGDME) has been investigated. Microelectrode studies in a series of tetrabutylammonium salt (TBA salt)/DME-based electrolytes showed that O-2 solubility and diffusion coefficient are not significantly affected by the electrolyte anion. The ORR voltammograms on microelectrodes in these electrolytes exhibited steady-state limiting current behavior. In contrast, peak-shaped voltammograms were observed in Li+-conducting electrolytes suggesting a reduction of the effective electrode area by passivating ORR products as well as migration-diffusion control of the reactants at the microelectrode. FT-IR spectra have revealed that Li+ ions are solvated to form solvent separated ion pairs of the type Li+(DME)(n)PF6- and Li-(TEGDME)PF6- in LiPF6-based electrolytes. On the other hand, the contact ion pairs (DME),Li+(CF3S03) and(TEGDNIE)Li+(CF3SO3-) appear to form in LiSO3CF3-containing electrolytes. In the LiSO3CF3 based electrolytes the initial ORR product, superoxide (O-2). is stabilized in solution by forming I(DME)(m-1) (O-2(-))[Li+(CF3SO3-) and RTEGDME)(O-2(-))1Li(+)(CF3SO3-) complexes. These soluble superoxide complexes are able to diffuse away from the electrode surface reaction sites to the bulk electrolyte in the electrode pores where they decompose to form Li2O2. This explains the higher capacity obtained in Li/02 cells utilizing LiCF3SO3-/TEGDME electrolytes. (C) 2015 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1055 / A1066
页数:12
相关论文
共 50 条
  • [31] Recent advances in the development of Li-air batteries
    Capsoni, Doretta
    Bini, Marcella
    Ferrari, Stefania
    Quartarone, Eliana
    Mustarelli, Piercarlo
    JOURNAL OF POWER SOURCES, 2012, 220 : 253 - 263
  • [32] The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li-Air and Li-Air Flow Batteries
    Zheng, J. P.
    Andrei, P.
    Hendrickson, M.
    Plichta, E. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (01) : A43 - A46
  • [33] Nanoporous Catalysts for Rechargeable Li-air Batteries
    Cheng Fangyi
    Chen Jun
    ACTA CHIMICA SINICA, 2013, 71 (04) : 473 - 477
  • [34] Advances in electrocatalysts for the cathode of Li-air batteries
    Cao, Xuecheng
    Yang, Ruizhi
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (32): : 3340 - 3349
  • [35] Catalysts for Li-air batteries, photocatalysis developed
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2010, 89 (08): : 18 - 18
  • [36] Nonaqueous Li-Air Batteries: A Status Report
    Luntz, Alan C.
    McCloskey, Bryan D.
    CHEMICAL REVIEWS, 2014, 114 (23) : 11721 - 11750
  • [37] Reversible Discharge Products in Li-Air Batteries
    Liu, Tong
    Zhao, Siyuan
    Xiong, Qi
    Yu, Jie
    Wang, Jian
    Huang, Gang
    Ni, Meng
    Zhang, Xinbo
    ADVANCED MATERIALS, 2023, 35 (20)
  • [38] Theoretical energy density of Li-air batteries
    Zheng, J. P.
    Liang, R. Y.
    Hendrickson, M.
    Plichta, E. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (06) : A432 - A437
  • [39] Modeling of Li-Air Batteries with Dual Electrolyte
    Andrei, P.
    Zheng, J. P.
    Hendrickson, M.
    Plichta, E. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) : A770 - A780
  • [40] Effects of Li Salt Anions and O2 Gas on Li Dissolution/Deposition Behavior at Li Metal Negative Electrode for Non-Aqueous Li-Air Batteries
    Saito, Morihiro
    Fujinami, Taichi
    Yamada, Shinya
    Ishikawa, Taro
    Otsuka, Hiromi
    Ito, Kimihiko
    Kubo, Yoshimi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : A2872 - A2880