Self-Supervised Prototype Representation Learning for Event-Based Corporate Profiling

被引:0
|
作者
Yuan, Zixuan [1 ]
Liu, Hao [2 ]
Hu, Renjun [3 ]
Zhang, Denghui [1 ]
Xiong, Hui [1 ]
机构
[1] Rutgers State Univ, Piscataway, NJ 08854 USA
[2] Baidu Res, Business Intelligence Lab, Beijing, Peoples R China
[3] Alibaba Grp, Hangzhou, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event-based corporate profiling aims to assess the evolving operational status of the corresponding corporate from its event sequence. Existing studies on corporate profiling have partially addressed the problem via (i) case-by-case empirical analysis by leveraging traditional financial methods, or (ii) the automatic profile inference by reformulating the problem into a supervised learning task. However, both approaches heavily rely on domain knowledge and are labor-intensive. More importantly, the task-specific nature of both approaches prevents the obtained corporate profiles from being applied to diversified downstream applications. To this end, in this paper, we propose a Self-Supervised Prototype Representation Learning (SePaL) framework for dynamic corporate profiling. By exploiting the topological information of an event graph and exploring self-supervised learning techniques, SePaL can obtain unified corporate representations that are robust to event noises and can be easily fine-tuned to benefit various down-stream applications with only a few annotated data. Specifically, we first infer the initial cluster distribution of noise-resistant event prototypes based on latent representations of events. Then, we construct four permutation-invariant self-supervision signals to guide the representation learning of the event prototype. In terms of applications, we exploit the learned time-evolving corporate representations for both stock price spike prediction and corporate default risk evaluation. Experimental results on two real-world corporate event datasets demonstrate the effectiveness of SePaL for these two applications.
引用
收藏
页码:4644 / 4652
页数:9
相关论文
共 50 条
  • [31] FEDERATED SELF-SUPERVISED LEARNING FOR ACOUSTIC EVENT CLASSIFICATION
    Feng, Meng
    Kao, Chieh-Chi
    Tang, Qingming
    Sun, Ming
    Rozgic, Viktor
    Matsoukas, Spyros
    Wang, Chao
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 481 - 485
  • [32] CoBERT: Self-Supervised Speech Representation Learning Through Code Representation Learning
    Meng, Chutong
    Ao, Junyi
    Ko, Tom
    Wang, Mingxuan
    Li, Haizhou
    INTERSPEECH 2023, 2023, : 2978 - 2982
  • [33] Randomly shuffled convolution for self-supervised representation learning
    Oh, Youngjin
    Jeon, Minkyu
    Ko, Dohwan
    Kim, Hyunwoo J.
    INFORMATION SCIENCES, 2023, 623 : 206 - 219
  • [34] Self-supervised representation learning for SAR change detection
    Davis, Eric K.
    Houglund, Ian
    Franz, Douglas
    Allen, Michael
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXX, 2023, 12520
  • [35] AtmoDist: Self-supervised representation learning for atmospheric dynamics
    Hoffmann, Sebastian
    Lessig, Christian
    ENVIRONMENTAL DATA SCIENCE, 2023, 2
  • [36] Heuristic Attention Representation Learning for Self-Supervised Pretraining
    Van Nhiem Tran
    Liu, Shen-Hsuan
    Li, Yung-Hui
    Wang, Jia-Ching
    SENSORS, 2022, 22 (14)
  • [37] Self-supervised representation learning for surgical activity recognition
    Paysan, Daniel
    Haug, Luis
    Bajka, Michael
    Oelhafen, Markus
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 2037 - 2044
  • [38] Self-Supervised Learning With Segmental Masking for Speech Representation
    Yue, Xianghu
    Lin, Jingru
    Gutierrez, Fabian Ritter
    Li, Haizhou
    IEEE Journal on Selected Topics in Signal Processing, 2022, 16 (06): : 1367 - 1379
  • [39] Self-Supervised Motion Perception for Spatiotemporal Representation Learning
    Liu, Chang
    Yao, Yuan
    Luo, Dezhao
    Zhou, Yu
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 9832 - 9846
  • [40] Mixed Autoencoder for Self-supervised Visual Representation Learning
    Chen, Kai
    Liu, Zhili
    Hong, Lanqing
    Xu, Hang
    Li, Zhenguo
    Yeung, Dit-Yan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22742 - 22751