Characterization of Three Dimensional Cellular Automata over Zm

被引:2
|
作者
Sah, Ferhat [1 ]
Siap, Irfan [2 ]
Akin, Hasan [3 ]
机构
[1] Yildiz Tech Univ, Dept Engn Math, TR-34210 Istanbul, Turkey
[2] Yildiz Tech Univ, Fac Sci, Dept Math Arts, TR-34210 Istanbul, Turkey
[3] Zirve Univ, Fac Educ, Dept Math, TR-27260 Gaziantep, Turkey
关键词
3D Cellular automata; Matrix representation; Finite fields; REVERSIBILITY;
D O I
10.1063/1.4747659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the algebraic behavior of three dimensional linear cellular automata over Z(m). we provide necessary and sufficient conditions for a three dimensional linear cellular automata over Z(m) to be reversible or irreversible. As a consequence of our result we characterize three dimensional linear cellular automata under the null boundary conditions. Three dimensional cellular automata wasn't much studied by researches. Tsalides et al. characterized three dimensional cellular automata in [1] and then Hemmingsson investigated quasi periodic behavior of three dimensional cellular automata in [2].
引用
收藏
页码:138 / 141
页数:4
相关论文
共 50 条
  • [31] Parameter characterization of two-dimensional cellular automata rule space
    Barbosa de Oliveira, Gina Maira
    Cardoso Siqueira, Sandra Regina
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 217 (01) : 1 - 6
  • [32] CHARACTERIZATION OF 2-DIMENSIONAL CELLULAR AUTOMATA USING MATRIX ALGEBRA
    CHOWDHURY, DR
    CHAUDHURI, PP
    INFORMATION SCIENCES, 1993, 71 (03) : 289 - 314
  • [33] One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations
    Arrighi, Pablo
    Nesme, Vincent
    Werner, Reinhard
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2008, 5196 : 64 - +
  • [34] On Designing Gliders in Three-Dimensional Larger than Life Cellular Automata
    Imai, Katsunobu
    Masamori, Yasuaki
    Iwamoto, Chuzo
    Morita, Kenichi
    NATURAL COMPUTING, 2010, 2 : 184 - +
  • [35] Three-dimensional cellular automata for simulation of microstructure evolution during recrystallization
    Svyetlichnyy, Dmytro S.
    Matachowski, Jaroslaw L.
    NUMIFORM '07: MATERIALS PROCESSING AND DESIGN: MODELING, SIMULATION AND APPLICATIONS, PTS I AND II, 2007, 908 : 1357 - +
  • [36] One-Dimensional Cellular Automata with Reflective Boundary Conditions and Radius Three
    Akin, H.
    Siap, I.
    Uguz, S.
    ACTA PHYSICA POLONICA A, 2014, 125 (02) : 405 - 407
  • [37] EFFICIENT CHARACTERIZATION OF CELLULAR AUTOMATA
    DAS, AK
    GANGULY, A
    DASGUPTA, A
    BHAWMIK, S
    CHAUDHURI, PP
    IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1990, 137 (01): : 81 - 87
  • [38] A complete and efficiently computable topological classification of D-dimensional linear cellular automats over Zm
    Manzini, G
    Margara, L
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1997, 1256 : 794 - 804
  • [39] A stereological method for the analysis of cellular lesions in tissue sections using three-dimensional cellular automata
    Luebeck, EG
    deGunst, MCM
    MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (12-13) : 1387 - 1400
  • [40] TWO-DIMENSIONAL CELLULAR AUTOMATA
    PACKARD, NH
    WOLFRAM, S
    JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (5-6) : 901 - 946