Ion storage dosimetry

被引:9
|
作者
Mathur, VK [1 ]
机构
[1] USN, Ctr Surface Warfare, Carderock Div, Radiat Technol Off, Bethesda, MD 20817 USA
关键词
Data storage equipment - Ionization chambers - MOSFET devices - Optimization - Radiation;
D O I
10.1016/S0168-583X(01)00714-5
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters. a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber. the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device. underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided. Published by Elsevier Science B.V.
引用
收藏
页码:190 / 206
页数:17
相关论文
共 50 条
  • [41] Characterization of Small Volume Ion Chambers for Absolute Dosimetry
    Calvo, O.
    Stathakis, S.
    Gutierrez, A.
    Mavroidis, P.
    Moral, S.
    Esquivel, C.
    Shi, C.
    Papanikolaou, N.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [43] A dosimetry procedure based on storage phosphors with short fading time
    Bernardini, A.
    Salis, M.
    RADIATION PROTECTION DOSIMETRY, 2008, 132 (03) : 297 - 302
  • [44] Origin of storage capacity enhancement by replacing univalent ion with multivalent ion for energy storage
    Wu, Junlin
    Yang, Qian
    Li, Jia
    Zhong, Lixiang
    Dong, Liubing
    Liu, Wenbao
    Mou, Jian
    Xu, Chengjun
    ELECTROCHIMICA ACTA, 2018, 282 : 30 - 37
  • [45] Storage of crystalline ion beams
    Schramm, U
    Schätz, T
    Bussmann, M
    Habs, D
    PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, : 112 - 116
  • [46] Heavy ion storage rings
    Muller, A
    Wolf, A
    ACCELERATOR-BASED ATOMIC PHYSICS TECHNIQUES AND APPLICATIONS, 1997, : 147 - 182
  • [47] ION STORAGE COLLISION TECHNIQUE
    DEHMELT, HG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (01): : 14 - 15
  • [48] ION STORAGE IN KINGDON TRAP
    SEKIOKA, T
    TERASAWA, M
    AWAYA, Y
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1991, 117 (1-3): : 253 - 259
  • [49] Storage and cooling of ion beams
    Meshkov, Igor
    PHYSICA SCRIPTA, 2015, T166
  • [50] Astrochemistry in an Ion Storage Ring
    Novotny, O.
    Berg, M. H.
    Buhr, H.
    Froese, M.
    Geppert, W.
    Grieser, M.
    Grussie, F.
    Hamberg, M.
    Krantz, C.
    Lestinsky, M.
    Mendes, M.
    Nordhorn, C.
    Novotny, S.
    Orlov, D. A.
    Petrignani, A.
    Shornikov, A.
    Stuetzel, J.
    Schwalm, D.
    Savin, D. W.
    Wolf, A.
    XXVII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC 2011), PTS 1-15, 2012, 388