Target-Cognisant Siamese Network for Robust Visual Object Tracking *

被引:3
|
作者
Jiang, Yingjie [1 ]
Song, Xiaoning [1 ]
Xu, Tianyang [1 ]
Feng, Zhenhua [2 ,3 ]
Wu, Xiaojun [1 ]
Kittler, Josef [3 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
[2] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, England
[3] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, England
基金
中国国家自然科学基金;
关键词
Visual object tracking; Siamese network; Anchor -free regression; PEDESTRIAN TRACKING;
D O I
10.1016/j.patrec.2022.09.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Siamese trackers have become the mainstream framework for visual object tracking in recent years. However, the extraction of the template and search space features is disjoint for a Siamese tracker, resulting in a limited interaction between its classification and regression branches. This degrades the model capacity accurately to estimate the target, especially when it exhibits severe appearance variations. To address this problem, this paper presents a target-cognisant Siamese network for robust visual tracking. First, we introduce a new target-cognisant attention block that computes spatial cross-attention between the template and search branches to convey the relevant appearance information before correlation. Second, we advocate two mechanisms to promote the precision of obtained bounding boxes under complex tracking scenarios. Last, we propose a max filtering module to utilise the guidance of the regression branch to filter out potential interfering predictions in the classification map. The experimental results obtained on challenging benchmarks demonstrate the competitive performance of the proposed method.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [41] SiamADT: Siamese Attention and Deformable Features Fusion Network for Visual Object Tracking
    Wang, Fasheng
    Cao, Ping
    Wang, Xing
    He, Bing
    Sun, Fuming
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7933 - 7950
  • [42] SiamADT: Siamese Attention and Deformable Features Fusion Network for Visual Object Tracking
    Fasheng Wang
    Ping Cao
    Xing Wang
    Bing He
    Fuming Sun
    Neural Processing Letters, 2023, 55 : 7933 - 7950
  • [43] SiamMFC: Visual Object Tracking Based on Mainfold Full Convolution Siamese Network
    Chen, Jia
    Wang, Fan
    Zhang, Yingjie
    Ai, Yibo
    Zhang, Weidong
    SENSORS, 2021, 21 (19)
  • [44] CoSiNet: Dual-Branch Collaborative Siamese Network for Visual Object Tracking
    Zhou, Wenjun
    Liu, Yao
    Wang, Nan
    Wang, Yifan
    Peng, Bo
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1675 - 1680
  • [45] Siamese High-Level Feature Refine Network for Visual Object Tracking
    Rahman, Md. Maklachur
    Ahmed, Md Rishad
    Laishram, Lamyanba
    Kim, Seock Ho
    Jung, Soon Ki
    ELECTRONICS, 2020, 9 (11) : 1 - 21
  • [46] Channel and spatial attention-based Siamese network for visual object tracking
    Tian, Shishun
    Chen, Zixi
    Chen, Bolin
    Zou, Wenbin
    Li, Xia
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (03)
  • [47] Attention shake siamese network with auxiliary relocation branch for visual object tracking
    Wang, Jun
    Liu, Weibin
    Xing, Weiwei
    Wang, Liqiang
    Zhang, Shunli
    NEUROCOMPUTING, 2020, 400 : 53 - 72
  • [48] Siamese Centerness Prediction Network for Real-Time Visual Object Tracking
    Yue Wu
    Chengtao Cai
    Chai Kiat Yeo
    Neural Processing Letters, 2023, 55 : 1029 - 1044
  • [49] Relation-aware Siamese region proposal network for visual object tracking
    Jiaming Zhu
    Guopeng Zhang
    Shibin Zhou
    Kun Li
    Multimedia Tools and Applications, 2021, 80 : 15469 - 15485
  • [50] Relation-aware Siamese region proposal network for visual object tracking
    Zhu, Jiaming
    Zhang, Guopeng
    Zhou, Shibin
    Li, Kun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 15469 - 15485