Non-Intrusive Load Monitoring Based on the Graph Least Squares Reconstruction Method

被引:2
|
作者
Ma, Xiaoyang [1 ]
Zheng Diwen [1 ]
Ying, Wang [1 ]
Yang, Wang [1 ]
Hong, Luo [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
关键词
Home appliances; Reconstruction algorithms; Signal reconstruction; Laplace equations; Hidden Markov models; Frequency-domain analysis; Power demand; Graph signal smoothness; iterative least squares reconstruction; non-intrusive load monitoring; smart power utilization; CLASSIFICATION;
D O I
10.1109/TPWRD.2021.3112287
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monitoring the operating conditions of residential appliances by collecting the total power consumption data of households has a great significance for smart power utilization. In this study, a graph least squares reconstruction approach is proposed. First, the graph signal is constructed using the collected active power consumption data, providing unique appliance signature information. The signal smoothness of the graph and an iterative least squares reconstruction algorithm are utilized for classification. The proposed graph reconstruction method relies on only low-sampling data from installed smart meters. It aims to address some existing problems of event-based NILM methods like measurement noise, indistinguishable load signatures, and inaccurate power reconstruction. Also, extensive training and associated calculations are not required. Simulation results on the REDD benchmark dataset demonstrate that the proposed method outperforms some of the current state-of-the-art techniques.
引用
收藏
页码:2562 / 2570
页数:9
相关论文
共 50 条
  • [31] Non-Intrusive Load Monitoring: A Power Consumption Based Relaxation
    Anderson, Kyle D.
    Moura, Jose M. F.
    Berges, Mario
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 215 - 219
  • [32] Review of Non-intrusive Load Appliance Monitoring
    Dan, Wang
    Li, Huang Xiao
    Ce, Ye Shu
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 18 - 23
  • [33] Basic Summary of Non-intrusive Load Monitoring
    Zhang, Lu
    Zhu, Lin
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 372 - 376
  • [34] PATH SIGNATURES FOR NON-INTRUSIVE LOAD MONITORING
    Moore, Paul
    Iliant, Theodor-Mihai
    Ion, Filip-Alexandru
    Wu, Yue
    Lyons, Terry
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3808 - 3812
  • [35] Thresholding methods in non-intrusive load monitoring
    Daniel Precioso
    David Gómez-Ullate
    The Journal of Supercomputing, 2023, 79 : 14039 - 14062
  • [36] An Overview of Non-Intrusive Load Monitoring Methodologies
    Abubakar, Isiyaku
    Khalid, S. N.
    Mustafa, M. W.
    Shareef, Hussain
    Mustapha, Mamunu
    2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, : 54 - 59
  • [37] Federated Learning for Non-intrusive Load Monitoring
    Meng, Zhaorui
    Xie, Xiaozhu
    Xie, Yanqi
    IAENG International Journal of Applied Mathematics, 2023, 53 (03)
  • [38] SmartM: A Non-intrusive Load Monitoring Platform
    Liu, Xiufeng
    Bolwig, Simon
    Nielsen, Per Sieverts
    BUSINESS INFORMATION SYSTEMS WORKSHOPS, BIS 2019, 2019, 373 : 424 - 434
  • [39] Non-intrusive load monitoring method for aircraft electrical equipment based on GRNN algorithm
    Yang J.
    Yang Z.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (03):
  • [40] Online non-intrusive load monitoring: A review
    Cruz-Rangel, David
    Ocampo-Martinez, Carlos
    Diaz-Rozo, Javier
    ENERGY NEXUS, 2025, 17