On the approximate solution of a piecewise nonlinear oscillator under super-harmonic resonance

被引:18
|
作者
Ji, JC [1 ]
Hansen, CH [1 ]
机构
[1] Univ Adelaide, Dept Engn Mech, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/j.jsv.2004.05.033
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
An approximate solution for the super-harmonic resonance response of a periodically excited nonlinear oscillator with a piecewise nonlinear-linear characteristic is constructed using both a matching method and a modified averaging method. The validity of the developed analysis is confirmed by comparing the approximate solutions with the results of direct numerical integration of the original equation. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:467 / 474
页数:8
相关论文
共 50 条
  • [41] Solution of a quadratic nonlinear oscillator by the method of harmonic balance
    Hu, H
    JOURNAL OF SOUND AND VIBRATION, 2006, 293 (1-2) : 462 - 468
  • [42] Solution of a mixed parity nonlinear oscillator: Harmonic balance
    Hu, H.
    JOURNAL OF SOUND AND VIBRATION, 2007, 299 (1-2) : 331 - 338
  • [43] A 1.52-GHz Super-Harmonic Injection-Locked Ring Oscillator in 130nm CMOS
    Fahmy, Eman Salah El-Din
    Ibrahim, Sameh Assem
    Hafez, Ismail Mohamed
    2019 IEEE 62ND INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2019, : 1037 - 1040
  • [44] An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
    Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
    不详
    Phys Lett Sect A Gen At Solid State Phys, 32 (2805-2809):
  • [45] An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
    Belendez, A.
    Mendez, D. I.
    Fernandez, E.
    Marini, S.
    Pascual, I.
    PHYSICS LETTERS A, 2009, 373 (32) : 2805 - 2809
  • [46] Approximate Solution for the Duffing-Harmonic Oscillator by the Enhanced Cubication Method
    Elias-Zuniga, Alex
    Martinez-Romero, Oscar
    Cordoba-Diaz, Renek.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [47] Stability and approximate solution of a relative-rotation nonlinear dynamical system under harmonic, excitation
    Shi Pei-Ming
    Liu Bin
    Liu Shuang
    ACTA PHYSICA SINICA, 2008, 57 (08) : 4675 - 4684
  • [48] Low Phase Noise 20 GHz Microwave Frequency Divider Based on a Super-Harmonic Injection Locked Optoelectronic Oscillator
    Peng, Huanfa
    Guo, Rui
    Du, Huayang
    Xu, Yongchi
    Zhang, Cheng
    Chen, Jingbiao
    Chen, Zhangyuan
    2018 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (IFCS), 2018, : 397 - 399
  • [49] Resonance and stability of 3rd super-harmonic and 1/3rd sub-harmonic of fractional duffing system
    Wei Shi
    Rong Guo
    Jiaquan Xie
    Yanjie Zhang
    Acta Mechanica, 2024, 235 : 2113 - 2132
  • [50] Resonance and stability of 3rd super-harmonic and 1/3rd sub-harmonic of fractional duffing system
    Shi, Wei
    Guo, Rong
    Xie, Jiaquan
    Zhang, Yanjie
    ACTA MECHANICA, 2024, 235 (04) : 2113 - 2132