Prediction and collection of protein-metabolite interactions

被引:47
|
作者
Zhao, Tianyi [1 ,2 ]
Liu, Jinxin [3 ]
Zeng, Xi [4 ]
Wang, Wei [4 ]
Li, Sheng [5 ]
Zang, Tianyi [6 ,7 ]
Peng, Jiajie [4 ]
Yang, Yang [8 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Beth Israel Deaconess Med Ctr, New York, NY 10003 USA
[3] Harbin Inst Technol, Dept Comp Sci, Harbin, Peoples R China
[4] Northwestern Polytech Univ, Sch Comp Sci, Xian, Peoples R China
[5] Wuhan Univ, Zhongnan Hosp, Wuhan, Peoples R China
[6] Harbin Inst Technol HIT, Sch Comp Sci & Technol, Harbin, Peoples R China
[7] Univ Oxford, Dept Comp Sci, Oxford, England
[8] Inner Mongolia Univ, Sch Life Sci, Hohhot, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
protein-metabolite interactions; cellular process; mass spectrometry;
D O I
10.1093/bib/bbab014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Interactions between proteins and small molecule metabolites play vital roles in regulating protein functions and controlling various cellular processes. The activities of metabolic enzymes, transcription factors, transporters and membrane receptors can all be mediated through protein-metabolite interactions (PMIs). Compared with the rich knowledge of protein-protein interactions, little is known about PMIs. To the best of our knowledge, no existing database has been developed for collecting PMIs. The recent rapid development of large-scale mass spectrometry analysis of biomolecules has led to the discovery of large amounts of PMIs. Therefore, we developed the PMI-DB to provide a comprehensive and accurate resource of PMIs. A total of 49 785 entries were manually collected in the PMI-DB, corresponding to 23 small molecule metabolites, 9631 proteins and 4 species. Unlike other databases that only provide positive samples, the PMI-DB provides non-interaction between proteins and metabolites, which not only reduces the experimental cost for biological experimenters but also facilitates the construction of more accurate algorithms for researchers using machine learning. To show the convenience of the PMI-DB, we developed a deep learning-based method to predict PMIs in the PMI-DB and compared it with several methods. The experimental results show that the area under the curve and area under the precision-recall curve of our method are 0.88 and 0.95, respectively. Overall, the PMI-DB provides a user-friendly interface for browsing the biological functions of metabolites/proteins of interest, and experimental techniques for identifying PMIs in different species, which provides important support for furthering the understanding of cellular processes. The PMI-DB is freely accessible at http://easybioai.com/PMIDB.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Decode protein-metabolite regulatory network: one MIDAS at a time
    Liu, Tian
    Gao, Chen
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023, 8 (01)
  • [32] Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome
    Patrick, Ambrose Teru
    He, Weilue
    Madu, Joshua
    Sripathi, Srinivas R.
    Choi, Seulggie
    Lee, Kook
    Samson, Faith Pwaniyibo
    Powell, Folami L.
    Bartoli, Manuela
    Jee, Donghyun
    Gutsaeva, Diana R.
    Jahng, Wan Jin
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2020, 19 (02) : 829 - 848
  • [33] Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase
    Hicks, Kevin G.
    Cluntun, Ahmad A.
    Schubert, Heidi L.
    Hackett, Sean R.
    Berg, Jordan A.
    Leonard, Paul G.
    Aleixo, Mariana A. Ajalla
    Zhou, Youjia
    Bott, Alex J.
    Salvatore, Sonia R.
    Chang, Fei
    Blevins, Aubrie
    Barta, Paige
    Tilley, Samantha
    Leifer, Aaron
    Guzman, Andrea
    Arok, Ajak
    Fogarty, Sarah
    Winter, Jacob M.
    Ahn, Hee-Chul
    Allen, Karen N.
    Block, Samuel
    Cardoso, Iara A.
    Ding, Jianping
    Dreveny, Ingrid
    Gasper, William C.
    Ho, Quinn
    Matsuura, Atsushi
    Palladino, Michael J.
    Prajapati, Sabin
    Sun, Pengkai
    Tittmann, Kai
    Tolan, Dean R.
    Unterlass, Judith
    VanDemark, Andrew P.
    Vander Heiden, Matthew G.
    Webb, Bradley A.
    Yun, Cai-Hong
    Zhao, Pengkai
    Wang, Bei
    Schopter, Francisco J.
    Hill, Christopher P.
    Nonato, Maria Cristina
    Muller, Florian L.
    Cox, James E.
    Rutter, Jared
    SCIENCE, 2023, 379 (6636) : 996 - 1003
  • [34] Detection of protein-metabolite adducts using natural isotopic signatures.
    Yue, W
    Koen, YM
    Hanzlik, RP
    CHEMICAL RESEARCH IN TOXICOLOGY, 2004, 17 (12) : 1772 - 1772
  • [35] Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions
    Stincone, Paolo
    Naimi, Amira
    Saviola, Anthony J.
    Reher, Raphael
    Petras, Daniel
    PROTEOMICS, 2024, 24 (12-13)
  • [36] Detection of protein-metabolite adducts using natural isotopic signatures.
    Yue, WM
    Koen, YM
    Hanzlik, RP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U385 - U385
  • [37] Protein-metabolite association studies identify novel proteomic determinants of metabolite levels in human plasma
    Benson, Mark D.
    Eisman, Aaron S.
    Tahir, Usman A.
    Katz, Daniel H.
    Deng, Shuliang
    Ngo, Debby
    Robbins, Jeremy M.
    Hofmann, Alissa
    Shi, Xu
    Zheng, Shuning
    Keyes, Michelle
    Yu, Zhi
    Gao, Yan
    Farrell, Laurie
    Shen, Dongxiao
    Chen, Zsu-Zsu
    Cruz, Daniel E.
    Sims, Mario
    Correa, Adolfo
    Tracy, Russell P.
    Durda, Peter
    Taylor, Kent D.
    Liu, Yongmei
    Johnson, W. Craig
    Guo, Xiuqing
    Yao, Jie
    Chen, Yii-Der Ida
    Manichaikul, Ani W.
    Jain, Deepti
    Yang, Qiong
    Bouchard, Claude
    Sarzynski, Mark A.
    Rich, Stephen S.
    Rotter, Jerome I.
    Wang, Thomas J.
    Wilson, James G.
    Clish, Clary B.
    Sarkar, Indra Neil
    Natarajan, Pradeep
    Gerszten, Robert E.
    CELL METABOLISM, 2023, 35 (09) : 1646 - 1660.e3
  • [38] Unraveling Protein-Metabolite Interactions in Precision Nutrition: A Case Study of Blueberry-Derived Metabolites Using Advanced Computational Methods
    Bhandari, Dipendra
    Adepu, Kiran Kumar
    Anishkin, Andriy
    Kay, Colin D.
    Young, Erin E.
    Baumbauer, Kyle M.
    Ghosh, Anuradha
    Chintapalli, Sree V.
    METABOLITES, 2024, 14 (08)
  • [39] Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity
    Luzarowski, Marcin
    Vicente, Ruben
    Kiselev, Andrei
    Wagner, Mateusz
    Schlossarek, Dennis
    Erban, Alexander
    de Souza, Leonardo Perez
    Childs, Dorothee
    Wojciechowska, Izabela
    Luzarowska, Urszula
    Gorka, Michal
    Sokolowska, Ewelina M.
    Kosmacz, Monika
    Moreno, Juan C.
    Brzezinska, Aleksandra
    Vegesna, Bhavana
    Kopka, Joachim
    Fernie, Alisdair R.
    Willmitzer, Lothar
    Ewald, Jennifer C.
    Skirycz, Aleksandra
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [40] Wheat grain proteomic and protein-metabolite interactions analyses provide insights into plant growth promoting bacteria-arbuscular mycorrhizal fungi-wheat interactions
    Yadav, Radheshyam
    Chakraborty, Sudip
    Ramakrishna, Wusirika
    PLANT CELL REPORTS, 2022, 41 (06) : 1417 - 1437