Hydride-based thermal energy storage

被引:23
|
作者
Adams, Marcus [1 ]
Buckley, Craig E. [2 ]
Busch, Markus [3 ]
Bunzel, Robin [4 ]
Felderhoff, Michael [5 ]
Heo, Tae Wook [6 ]
Humphries, Terry D. [2 ]
Jensen, Torben R. [7 ]
Klug, Julian [4 ]
Klug, Karl H. [4 ]
Moller, Kasper T. [8 ]
Paskevicius, Mark [2 ]
Peil, Stefan [9 ]
Peinecke, Kateryna [5 ]
Sheppard, Drew A. [5 ]
Stuart, Alastair D. [1 ]
Urbanczyk, Robert [9 ]
Wang, Fei [5 ]
Walker, Gavin S. [1 ]
Wood, Brandon C. [6 ]
Weiss, Danny [4 ]
Grant, David M. [1 ]
机构
[1] Univ Nottingham, Adv Mat Res Grp, Nottingham, England
[2] Curtin Univ, Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia
[3] MBS GmbH, D-46514 Schermbeck, Germany
[4] Westfalische Hsch, D-45487 Gelsenkirchen, Germany
[5] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[6] Lawrence Livermore Natl Lab LLNL, Lab Energy Applicat Future LEAF, Livermore, CA 94550 USA
[7] Aarhus Univ, Dept Chem, Aarhus, Denmark
[8] Aarhus Univ, Dept Biol & Chem Engn, Aarhus, Denmark
[9] Inst Energie & Umwelttechn, D-47229 Duisburg, Germany
来源
PROGRESS IN ENERGY | 2022年 / 4卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
thermal energy storage; metal hydrides; thermo-chemical energy storage; concentrated solar power; modelling; kinetics; thermal conductivity; PHASE-FIELD MODEL; HEAT-TRANSFER; METAL-HYDRIDES; MASS-TRANSFER; MOLTEN-SALT; HYDROGEN; SOLAR; TANK; PERFORMANCE; SYSTEMS;
D O I
10.1088/2516-1083/ac72ea
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction mechanisms of both the forward and backward MH reaction is presented, where this model is extrapolated to a small pilot scale reactor, detailing how a TCES could function/operate in a real-world setting using a conventional shell & tube reactor approach. Further, the important parameter of effective thermal conductivity is explored using an innovative multi-scale model, to providing extensive and relevant experimental data useful for reactor and system design. Promising high temperature MH material configurations may be tuned by either destabilisation, such as using additions to Ca and Sr based hydrides, or by stabilisation, such as fluorine addition to NaH, MgH2, or NaMgH3. This versatile thermodynamic tuning is discussed, including the challenges in accurately measuring the material characteristics at elevated temperatures (500 -700 degrees C). Attention to scale up is explored, including generic design and prototype considerations, and an example of a novel pilot-scale pillow-plate reactor currently in development; where materials used are discussed, overall tank design scope and system integration.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Numerical simulation of coupled heat and mass transfer in metal hydride-based hydrogen storage reactor
    Muthukumar, P.
    Ramana, S. Venkata
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 472 (1-2) : 466 - 472
  • [32] Metal hydride-based hydrogen production and storage system for stationary applications powered by renewable sources
    Rangel, C. M.
    Fernandes, V. R.
    Gano, A. J.
    RENEWABLE ENERGY, 2022, 197 : 398 - 405
  • [33] A novel multilayer fin structure for heat transfer enhancement in hydride-based hydrogen storage reactor
    Zhang, Shiwei
    Yang, Fusheng
    Zhou, Lu
    Zhang, Yang
    Wu, Zhen
    Zhang, Zaoxiao
    Wang, Yuqi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (12) : 3837 - 3850
  • [34] Impacts, Barriers, and Future Prospective of Metal Hydride-Based Thermochemical Energy Storage System for High-Temperature Applications: A Comprehensive Review
    Dubey, Sumeet Kumar
    Kumar, K. Ravi
    Tiwari, Vinay
    Srivastva, Umish
    ENERGY TECHNOLOGY, 2024, 12 (04)
  • [35] HPLC retention behavior on hydride-based stationary phases
    Pesek, Joseph J.
    Matyska, Maria T.
    Larrabee, Susan
    JOURNAL OF SEPARATION SCIENCE, 2007, 30 (05) : 637 - 647
  • [36] Review of magnesium hydride-based materials: development and optimisation
    J.-C. Crivello
    B. Dam
    R. V. Denys
    M. Dornheim
    D. M. Grant
    J. Huot
    T. R. Jensen
    P. de Jongh
    M. Latroche
    C. Milanese
    D. Milčius
    G. S. Walker
    C. J. Webb
    C. Zlotea
    V. A. Yartys
    Applied Physics A, 2016, 122
  • [37] Thermal optimisation of metal hydride reactors for thermal energy storage applications
    Dong, D.
    Humphries, T. D.
    Sheppard, D. A.
    Stansby, B.
    Paskevicius, M.
    Sofianos, M. V.
    Chaudhary, A. -L.
    Dornheim, M.
    Buckley, C. E.
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (08): : 1820 - 1829
  • [38] Thermal Modeling and Performance Investigation of a Double-Stage Metal Hydride-Based Heat Transformer
    Sekhar, B. Satya
    Muthukumar, P.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2015, 67 (08) : 883 - 901
  • [39] Review of magnesium hydride-based materials: development and optimisation
    Crivello, J. -C.
    Dam, B.
    Denys, R. V.
    Dornheim, M.
    Grant, D. M.
    Huot, J.
    Jensen, T. R.
    de Jongh, P.
    Latroche, M.
    Milanese, C.
    Milcius, D.
    Walker, G. S.
    Webb, C. J.
    Zlotea, C.
    Yartys, V. A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (02): : 1 - 20
  • [40] Numerical investigation of energy desorption from magnesium nickel hydride based thermal energy storage system
    Indian Institute of Technology, Department of Energy Science and Engineering , Delhi, New Delhi
    110016, India
    J. Energy Syst., 1600, 2 (165-175):