Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations

被引:55
|
作者
Kamarian, S. [1 ]
Bodaghi, M. [2 ]
Isfahani, R. Barbaz [1 ]
Shakeri, M. [1 ]
Yas, M. H. [3 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham, England
[3] Razi Univ, Dept Mech Engn, Kermanshah, Iran
关键词
Multi-walled carbon nanotubes; nanocomposites; experiments; coefficient of thermal expansion; thermal buckling; REINFORCED COMPOSITE; DIFFERENTIAL QUADRATURE; MECHANICAL-PROPERTIES; LOAD-TRANSFER; BEHAVIOR; VIBRATION; TENSILE;
D O I
10.1080/15397734.2019.1674664
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The first aim of this article is to experimentally explore the effect of multi-walled carbon nanotubes (MWCNTs) on the coefficient of thermal expansion (CTE) of epoxy-based composites. Focusing on the obtained experimental data, two important conclusions can be drawn. (1) Though the CTE of carbon nanotubes (CNTs) is lower than that of neat epoxy, using more CNT does not necessarily decrease the CTE of epoxy polymer. (2) The optimum weight percentage of CNT is 0.3 which can reduce the CTE of epoxy up to 33%. As the second goal of the present research work, thermal buckling analysis of rectangular carbon-fiber-reinforced CNT/epoxy polymer (CFRCNTEP)-laminated composite plates is performed numerically. To this purpose, first, using the obtained experimental data and micro-mechanical models, the thermo-elastic properties of structure are calculated. Then, based on the first-order shear deformation theory (FSDT) and by means of generalized differential quadrature (GDQ) method, the influence of CNTs on the critical buckling temperature of CFRCNTEP composite plates is investigated. The numerical results reveal that MWCNTs can strongly affect thermal buckling behavior of composite plates. It is observed that by adding 0.3?wt. % CNTs into the matrix phase, the critical buckling temperature increases between 35 and 42%. Communicated by Krzysztof Kamil ?ur.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 50 条
  • [11] Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes
    Deng, C. F.
    Ma, Y. X.
    Zhang, P.
    Zhang, X. X.
    Wang, D. Z.
    MATERIALS LETTERS, 2008, 62 (16) : 2301 - 2303
  • [12] IMPLICATIONS OF STRESS DEPENDENCY OF THE THERMAL-EXPANSION COEFFICIENT ON THERMAL BUCKLING
    BERT, CW
    FU, C
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 1992, 114 (02): : 189 - 192
  • [13] Thermal buckling behavior of composite laminated plates
    Shiau, Le-Chung
    Kuo, Shih-Yao
    Chen, Cheng-Yuan
    COMPOSITE STRUCTURES, 2010, 92 (02) : 508 - 514
  • [14] The coefficient of thermal expansion of alumina particles filled polysulfone polymer composite
    Sui, G. (gxsui@imr.ac.cn), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (30):
  • [15] Interfacial thermal conductance of buckling carbon nanotubes
    Xu, Ke
    Zhang, Jicheng
    Hao, Xiaoli
    Wei, Ning
    Cao, Xuezheng
    Kang, Yang
    Cai, Kun
    AIP ADVANCES, 2018, 8 (06):
  • [16] AUTOMATED MEASUREMENT OF THE COEFFICIENT OF LINEAR THERMAL EXPANSION OF COMPOSITE POLYMER MATERIALS.
    Marasin, B.V.
    Gracheva, L.I.
    Fot, N.A.
    Ruban, V.V.
    Measurement Techniques, 1986, 29 (10): : 944 - 947
  • [17] AUTOMATED MEASUREMENT OF THE COEFFICIENT OF LINEAR THERMAL-EXPANSION OF COMPOSITE POLYMER MATERIALS
    MARASIN, BV
    GRACHEVA, LI
    FOT, NA
    RUBAN, VV
    MEASUREMENT TECHNIQUES USSR, 1986, 29 (10): : 944 - 947
  • [18] Thermal buckling load optimization of laminated composite plates
    Topal, U.
    Uzman, Ue.
    THIN-WALLED STRUCTURES, 2008, 46 (06) : 667 - 675
  • [19] Thermal buckling of simply supported composite sandwich plates
    Department of Flight Service Management, Aletheia University, Tainan 721, Taiwan
    Hangkong Taikong ji Minhang Xuekan, 2006, 2 (131-136):
  • [20] THERMAL BUCKLING ANALYSIS OF ISOTROPIC AND COMPOSITE PLATES WITH A HOLE
    CHANG, JS
    SHIAO, FJ
    JOURNAL OF THERMAL STRESSES, 1990, 13 (03) : 315 - 332