Bivariate Extension of Bell Polynomials

被引:0
|
作者
Zheng, Yuanping [1 ]
Li, Nadia N. [1 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou, Henan, Peoples R China
基金
美国国家科学基金会;
关键词
Stirling number of the second kind; r-Stirling number; Bell polynomial;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study bivariate extensions of Bell polynomials and r-Bell polynomials. Some identities related to the r-Stirling numbers and Bell polynomials are presented as special cases.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Generalized Bell polynomials
    Duran, Antonio J.
    JOURNAL OF APPROXIMATION THEORY, 2025, 306
  • [22] The Bell differential polynomials
    Schimming, R
    Rida, SZ
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 7, 1998, : 353 - 367
  • [23] Bivariate extension of the r-Dowling polynomials and two forms of generalized Spivey’s formula
    Mahid M. Mangontarum
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 703 - 712
  • [24] Bivariate extension of the r-Dowling polynomials and two forms of generalized Spivey's formula
    Mangontarum, Mahid M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 703 - 712
  • [25] Complete and incomplete Bell polynomials associated with Lah-Bell numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Han-Young
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [26] Bivariate affine Goncarov polynomials
    Lorentz, Rudolph
    Yan, Catherine H.
    DISCRETE MATHEMATICS, 2016, 339 (09) : 2371 - 2383
  • [27] On the bivariate permanent polynomials of graphs
    Liu, Shunyi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 148 - 163
  • [28] Accurate evaluation of bivariate polynomials
    Du, Peibing
    Jiang, Hao
    Li, Housen
    Cheng, Lizhi
    Yang, Canqun
    2016 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES (PDCAT), 2016, : 51 - 56
  • [29] Bivariate Mersenne polynomials and matrices
    Vieira Alves, Francisco Regis
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (03) : 83 - 95
  • [30] ON APPROXIMATION BY BIVARIATE INCOMPLETE POLYNOMIALS
    KROO, A
    CONSTRUCTIVE APPROXIMATION, 1994, 10 (02) : 197 - 206