Single-electron spin resonance in a nanoelectronic device using a global field

被引:33
|
作者
Vahapoglu, Ensar [1 ]
Slack-Smith, James P. [1 ]
Leon, Ross C. C. [1 ]
Lim, Wee Han [1 ]
Hudson, Fay E. [1 ]
Day, Tom [1 ]
Tanttu, Tuomo [1 ]
Yang, Chih Hwan [1 ]
Laucht, Arne [1 ]
Dzurak, Andrew S. [1 ]
Pla, Jarryd J. [1 ]
机构
[1] UNSW Sydney, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
QUANTUM; LOGIC; QUBIT;
D O I
10.1126/sciadv.abg9158
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spin-based silicon quantum electronic circuits offer a scalable platform for quantum computation, combining the manufacturability of semiconductor devices with the long coherence times afforded by spins in silicon. Advancing from current few-qubit devices to silicon quantum processors with upward of a million qubits, as required for fault-tolerant operation, presents several unique challenges, one of the most demanding being the ability to deliver microwave signals for large-scale qubit control. Here, we demonstrate a potential solution to this problem by using a three-dimensional dielectric resonator to broadcast a global microwave signal across a quantum nano-electronic circuit. Critically, this technique uses only a single microwave source and is capable of delivering control signals to millions of qubits simultaneously. We show that the global field can be used to perform spin resonance of single electrons confined in a silicon double quantum dot device, establishing the feasibility of this approach for scalable spin qubit control.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum trajectory analysis for electrical detection of single-electron spin resonance
    Jin, J
    Guo, J
    Luo, J
    Li, XQ
    Yan, YJ
    PHYSICAL REVIEW B, 2006, 73 (12):
  • [22] Single-Electron Shuttle Based on Electron Spin
    Kulinich, S. I.
    Gorelik, L. Y.
    Kalinenko, A. N.
    Krive, I. V.
    Shekhter, R. I.
    Park, Y. W.
    Jonson, M.
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [23] A single-electron device and circuit simulator
    Wasshuber, C
    Kosina, H
    SUPERLATTICES AND MICROSTRUCTURES, 1997, 21 (01) : 37 - 42
  • [24] Implementation of 4-bit Reversible Parallel Adder Using Nanoelectronic Single-Electron Circuitry
    Singh, C. J. Clement
    Sarkar, Subir Kumar
    Biswas, Anup Kumar
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2009, 4 (03) : 362 - 369
  • [25] Spin effects in single-electron tunnelling
    Barnas, J.
    Weymann, I.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (42)
  • [26] Control of single-electron device using environmental impedance modulation
    Wakaya, Fujio
    Yoshioka, Fumiyoshi
    Higurashi, Hitoshi
    Iwabuchi, Shuichi
    Nagaoka, Yosuke
    Gamo, Kenji
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1999, 38 (5 A): : 2812 - 2815
  • [27] Control of single-electron device using environmental impedance modulation
    Wakaya, F
    Yoshioka, F
    Higurashi, H
    Iwabuchi, S
    Nagaoka, Y
    Gamo, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1999, 38 (5A): : 2812 - 2815
  • [28] SINGLE-ELECTRON SPIN LOGICAL GATES
    MOLOTKOV, SN
    NAZIN, SS
    JETP LETTERS, 1995, 62 (03) : 273 - 281
  • [29] Single-electron and nanoscopic device evolution
    Kreupl, F
    SEMICONDUCTOR SILICON 2002, VOLS 1 AND 2, 2002, 2002 (02): : 979 - 991
  • [30] Reconfigurable logic gates using single-electron spin transistors
    Hai, Pham Nam
    Sugahara, Satoshi
    Tanaka, Masaaki
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (10A): : 6579 - 6585