Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data
被引:46
|
作者:
Wang, Chan
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USANYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USA
Wang, Chan
[1
]
Hu, Jiyuan
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USANYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USA
Hu, Jiyuan
[1
]
Blaser, Martin J.
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Ctr Adv Biotechnol & Med, Dept Med & Microbiol, Piscataway, NJ 08854 USANYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USA
Blaser, Martin J.
[2
]
Li, Huilin
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USANYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USA
Li, Huilin
[1
]
机构:
[1] NYU, Dept Populat Hlth, Div Biostat, Sch Med, New York, NY 10016 USA
[2] Rutgers State Univ, Ctr Adv Biotechnol & Med, Dept Med & Microbiol, Piscataway, NJ 08854 USA
Motivation: Recent microbiome association studies have revealed important associations between microbiome and disease/health status. Such findings encourage scientists to dive deeper to uncover the causal role of microbiome in the underlying biological mechanism, and have led to applying statistical models to quantify causal microbiome effects and to identify the specific microbial agents. However, there are no existing causal mediation methods specifically designed to handle high dimensional and compositional microbiome data. Results: We propose a rigorous Sparse Microbial Causal Mediation Model (SparseMCMM) specifically designed for the high dimensional and compositional microbiome data in a typical three-factor (treatment, microbiome and outcome) causal study design. In particular, linear log-contrast regression model and Dirichlet regression model are proposed to estimate the causal direct effect of treatment and the causal mediation effects of microbiome at both the community and individual taxon levels. Regularization techniques are used to perform the variable selection in the proposed model framework to identify signature causal microbes. Two hypothesis tests on the overall mediation effect are proposed and their statistical significance is estimated by permutation procedures. Extensive simulated scenarios show that SparseMCMM has excellent performance in estimation and hypothesis testing. Finally, we showcase the utility of the proposed SparseMCMM method in a study which the murine microbiome has been manipulated by providing a clear and sensible causal path among antibiotic treatment, microbiome composition and mouse weight.
机构:
Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R ChinaXiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
Li, Xuejiao
Wei, Shufang
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen, Peoples R ChinaXiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
Wei, Shufang
Yang, Yaxing
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
Xiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen, Peoples R China
Xiamen Univ, MOE Key Lab Econometr, Xiamen, Peoples R China
Xiamen Univ, Fujian Key Lab Stat, Xiamen, Peoples R ChinaXiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
机构:
Northeast Normal Univ, KLAS, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R ChinaNortheast Normal Univ, KLAS, Changchun 130024, Jilin, Peoples R China
Li, Danning
Xue, Lingzhou
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, 326 Thomas Bldg, University Pk, PA 16802 USANortheast Normal Univ, KLAS, Changchun 130024, Jilin, Peoples R China
Xue, Lingzhou
Yang, Haoyi
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, 326 Thomas Bldg, University Pk, PA 16802 USANortheast Normal Univ, KLAS, Changchun 130024, Jilin, Peoples R China
Yang, Haoyi
Yu, Xiufan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USANortheast Normal Univ, KLAS, Changchun 130024, Jilin, Peoples R China
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
Jiang, Qianqian
Li, Wenbo
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
Li, Wenbo
Li, Zeng
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
机构:
Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USAFred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
Dai, James Y.
Stanford, Janet L.
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USAFred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
Stanford, Janet L.
LeBlanc, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USAFred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA