Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries

被引:29
|
作者
Xu, Donghui [1 ]
Liu, Weijian [1 ,2 ]
Zhang, Congcong [1 ]
Cai, Xin [1 ]
Chen, Wenyan [1 ]
Fang, Yueping [1 ]
Yu, Xiaoyuan [1 ]
机构
[1] South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Guangdong, Peoples R China
[2] Guangdong Brunp Recycling Technol CO LTD, Guangzhou 528244, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Ferrous carbonate; Reduced graphene oxide; Anode materials; Nanocomposites; HYDROTHERMAL SYNTHESIS; REVERSIBLE CAPACITY; STORAGE CAPABILITY; FE3O4; NANOPARTICLES; MORPHOLOGY; STABILITY; COCO3;
D O I
10.1016/j.jpowsour.2017.08.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of advanced 1D/2D hierarchical nanocomposites for high-performance lithium-ion batteries is important and promising. Herein, monodispersed FeCO3 nanorods anchored on reduced graphene oxide (RGO) are prepared via a facile and efficient one-pot hydrothermal synthesis. The influence of RGO content on the morphology and electrochemical performances of the mesoporous FeCO3/reduced graphene oxide (FeCO3/RGO) composites are systematically studied. Optimized FeCO3/RGO composite shows good cycling stability. It delivers an initial discharge capacity of 1449 mAh. g(-1) at the current density of 200 mA g(-1) and maintained a capacity of 789 mAh-g(-1) after 80 cycles. A moderate amount of RGO sheets can not only provide more conductive channels to improve the electrode conductivity, but also effectively buffer the large volume variation of FeCO3 during continuous charge/discharge process. The combination of FeCO3 nanorods with RGOs synergistically contribute to enhanced capacity and durability of the composite anode. It demonstrates that RGO anchored-FeCO3 nanorods should be an attractive candidate as anode material for high-performance lithium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:359 / 366
页数:8
相关论文
共 50 条
  • [21] Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries
    Kannan, Aravindaraj G.
    Kim, Sang Hyung
    Yang, Hwi Soo
    Kim, Dong-Won
    RSC ADVANCES, 2016, 6 (30): : 25159 - 25166
  • [22] Green Synthesis of a Reduced-Graphene-Oxide Wrapped Nickel Oxide Nano-Composite as an Anode For High-Performance Lithium-Ion Batteries
    Singhbabu, Yashabanta N.
    Didwal, Pravin N.
    Jang, Kyunghoon
    Jang, Jaewon
    Park, Chan-Jin
    Ham, Moon-Ho
    CHEMISTRYSELECT, 2022, 7 (17):
  • [23] MnO2 nanoflakes anchored on reduced graphene oxide nanosheets as high performance anode materials for lithium-ion batteries
    Cao, Yong
    Lin, Xionggui
    Zhang, Chenglong
    Yang, Cheng
    Zhang, Qian
    Hu, Weiqiang
    Zheng, Mingsen
    Dong, Quanfeng
    RSC ADVANCES, 2014, 4 (57) : 30150 - 30155
  • [24] Hierarchical nanospheres of Fe2O3-Fe2N anchored on reduced graphene oxide as a high-performance anode for lithium-ion batteries
    Idrees, Memona
    Inayat, Abid
    Ullah, Irfan
    Albalawi, Karma
    Ullah, Sami
    Bashir, Shahid
    Wageh, S.
    Haider, Ali
    Rehman, Ata-ur
    Abbas, Syed Mustansar
    Zhang, Qin
    Li, Xuanke
    SURFACES AND INTERFACES, 2022, 30
  • [25] In situ synthesis of V2O3 nanorods anchored on reduced graphene oxide as high-performance lithium ion battery anode
    Liu, Xiaoqing
    Zhang, Dan
    Li, Guangshe
    Xue, Chenglin
    Ding, Junfang
    Li, Baoyun
    Chen, Dandan
    Li, Liping
    CHEMISTRYSELECT, 2018, 3 (43): : 12108 - 12112
  • [26] Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries
    Bengono, D. A. Mifounde
    Zhang, Bao
    Yao, Yingying
    Tang, Linbo
    Yu, Wanjing
    Zheng, Junchao
    Chu, Dewei
    Li, Jiayi
    Tong, Hui
    IONICS, 2020, 26 (04) : 1695 - 1701
  • [27] Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries
    D. A. Mifounde Bengono
    Bao Zhang
    Yingying Yao
    Linbo Tang
    Wanjing Yu
    Junchao Zheng
    Dewei Chu
    Jiayi Li
    Hui Tong
    Ionics, 2020, 26 : 1695 - 1701
  • [28] Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries
    Qiu, Danfeng
    Xu, Zijing
    Zheng, Mingbo
    Zhao, Bin
    Pan, Lijia
    Pu, Lin
    Shi, Yi
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (05) : 1889 - 1892
  • [29] SiC/C composite mesoporous nanotubes as anode material for high-performance lithium-ion batteries
    Shao, Changzheng
    Zhang, Feng
    Sun, Huayan
    Li, Baozong
    Li, Yi
    Yang, Yonggang
    MATERIALS LETTERS, 2017, 205 : 245 - 248
  • [30] Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries
    Danfeng Qiu
    Zijing Xu
    Mingbo Zheng
    Bin Zhao
    Lijia Pan
    Lin Pu
    Yi Shi
    Journal of Solid State Electrochemistry, 2012, 16 : 1889 - 1892