Atomic Oxygen Effects on POSS Polyimides in Low Earth Orbit

被引:153
|
作者
Minton, Timothy K. [1 ]
Wright, Michael E. [4 ]
Tomczak, Sandra J. [2 ]
Marquez, Sara A. [1 ]
Shen, Linhan [1 ]
Brunsvold, Amy L. [1 ]
Cooper, Russell [1 ]
Zhang, Jianming [1 ]
Vij, Vandana [3 ]
Guenthner, Andrew J. [5 ]
Petteys, Brian J. [4 ]
机构
[1] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA
[2] USAF, AFRL RZSB, Motor Branch, Res Lab, Edwards AFB, CA 93524 USA
[3] USAF, ERC Inc, Mat Applicat Branch, Res Lab, Edwards AFB, CA 93524 USA
[4] USN, Res & Engn Sci Dept, Div Chem, NAVAIR, China Lake, CA 93555 USA
[5] USAF, AFRL RZSM, Mat Applicat Branch, Res Lab, Edwards AFB, CA 93524 USA
基金
美国国家科学基金会;
关键词
hyperthermal atomic oxygen; polyimide; polyhedral oligomeric silsesquioxane; POSS; space environment; polymer erosion; low Earth orbit; HYPERVELOCITY SPACE DEBRIS; HYPERTHERMAL REACTIONS; SCATTERING DYNAMICS; O(P-3) COLLISIONS; VUV RADIATION; FEP TEFLON; SURFACE; POLYMERS; EROSION; RESISTANT;
D O I
10.1021/am201509n
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Kapton polyimde is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen in low Earth orbit (LEO), Kapton is severely eroded. An effective approach to prevent this erosion is to incorporate polyhedral oligomeric silsesquioxane (POSS.) into the polyimide matrix by copolymerizing POSS monomers with the polyimide precursor. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During exposure of POSS polyimide to atomic oxygen, organic material is degraded, and a silica, passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Laboratory and space-flight experiments have shown that POSS polyimides are highly resistant to atomic-oxygen attack, with erosion yields that may be as little as 1% those of Kapton. The results of all the studies indicate that POSS polyimide would be a space-survivable replacement for Kapton on spacecraft that operate in the LEO environment.
引用
收藏
页码:492 / 502
页数:11
相关论文
共 50 条
  • [31] Issues and consequences of atomic oxygen undercutting of protected polymers in low Earth orbit
    Banks, BA
    Snyder, A
    Miller, SK
    Demko, R
    PROTECTION OF MATERIALS AND STRUCTURES FROM SPACE ENVIRONMENT, 2003, 5 : 235 - 243
  • [32] Interaction potential between atomic oxygen and polymer surfaces in Low Earth Orbit
    Chen, Laiwen
    Lee, Chun-Hian
    JOURNAL OF SPACECRAFT AND ROCKETS, 2006, 43 (03) : 487 - 496
  • [33] Numerical evaluation of reactive probabilities of atomic oxygen with graphite in low earth orbit
    Yuhang Xuebao/Journal of Astronautics, 2000, 21 (02): : 64 - 69
  • [34] Numerical simulation on atomic oxygen undercutting of Kapton film in low earth orbit
    Liu, Yang
    Li, Guohui
    ACTA ASTRONAUTICA, 2010, 67 (3-4) : 388 - 395
  • [35] Atomic Oxygen Concentrators for Material Exposure Acceleration Tests in Low Earth Orbit
    Tagawa, Masahito
    Doi, Hiroaki
    Yokota, Kumiko
    JOURNAL OF SPACECRAFT AND ROCKETS, 2009, 46 (02) : 226 - 229
  • [36] ATOMIC OXYGEN RESISTANT COATINGS FOR LOW-EARTH-ORBIT SPACE STRUCTURES
    PACKIRISAMY, S
    SCHWAM, D
    LITT, MH
    JOURNAL OF MATERIALS SCIENCE, 1995, 30 (02) : 308 - 320
  • [37] Synergistic effects of atomic oxygen and thermal cycling in low earth orbit on polymer-matrixed space material
    Zhai, Ruiqiong
    Yang, Xiaoning
    Jiang, Lixiang
    Gao, Hong
    Zhang, Yuxin
    Jiao, Zilong
    HELIYON, 2023, 9 (08)
  • [39] Piezoelectric energy harvesting from the atomic oxygen hypervelocity impact in low Earth orbit
    Seo, Jae Hyeon
    Choi, Jae Young
    Seok, Jin Hyeok
    Cha, Ji-Hun
    Kim, June Young
    Kim, You Gwang
    Lee, Hae June
    Kim, Chun-Gon
    Chung, Kyoung-Jae
    Kim, Yunho
    ACTA ASTRONAUTICA, 2024, 223 : 585 - 593
  • [40] Consequences of atomic oxygen interaction with silicone and silicone contamination on surfaces in low earth orbit
    Banks, BA
    de Groh, KK
    Rutledge, SK
    Haytas, CA
    ROUGH SURFACE SCATTERING AND CONTAMINATION, 1999, 3784 : 62 - 71