Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen

被引:154
|
作者
Aspeborg, H
Schrader, J
Coutinho, PM
Stam, M
Kallas, Å
Djerbi, S
Nilsson, P
Denman, S
Amini, B
Sterky, F
Master, E
Sandberg, G
Mellerowicz, E
Sundberg, B
Henrissat, B
Teeri, TT [1 ]
机构
[1] AlbaNova Univ Ctr, Royal Inst Technol, Dept Biotechnol, SE-10691 Stockholm, Sweden
[2] Umea Plant Sci Ctr, Dept Forest Genet & Plant Physiol, SE-90183 Umea, Sweden
[3] CNRS, UMR 6098, F-13402 Marseille, France
[4] Univ Aix Marseille 1, F-13402 Marseille, France
[5] Univ Aix Marseille 2, F-13402 Marseille, France
关键词
D O I
10.1104/pp.104.055087
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Wood formation is a fundamental biological process with significant economic interest. While lignin biosynthesis is currently relatively well understood, the pathways leading to the synthesis of the key structural carbohydrates in wood fibers remain obscure. We have used a functional genomics approach to identify enzymes involved in carbohydrate biosynthesis and remodeling during xylem development in the hybrid aspen Populus tremula x tremuloides. Microarrays containing cDNA clones from different tissue-specific libraries were hybridized with probes obtained from narrow tissue sections prepared by cryosectioning of the developing xylem. Bioinformatic analyses using the sensitive tools developed for carbohydrate-active enzymes allowed the identification of 25 xylem-specific glycosyltransferases belonging to the Carbohydrate-Active EnZYme families GT2, GT8, GT14, GT31, GT43, GT47, and GT61 and nine glycosidases (or transglycosidases) belonging to the Carbohydrate-Active EnZYme families GH9, GH10, GH16, GH17, GH19, GH28, GH35, and GH51. While no genes encoding either polysaccharide lyases or carbohydrate esterases were found among the secondary wall-specific genes, one putative O-acetyltransferase was identified. These wood-specific enzyme genes constitute a valuable resource for future development of engineered fibers with improved performance in different applications.
引用
收藏
页码:983 / 997
页数:15
相关论文
共 50 条
  • [31] Conserved CA-rich motifs in gene promoters of Pt x tMYB021-responsive secondary cell wall carbohydrate-active enzymes in Populus
    Winzell, Anders
    Aspeborg, Henrik
    Wang, Yucheng
    Ezcurra, Ines
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 394 (03) : 848 - 853
  • [32] Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes
    Abbott, Wade
    Alber, Orly
    Bayer, Ed
    Berrin, Jean-Guy
    Boraston, Alisdair
    Brumer, Harry
    Brzezinski, Ryszard
    Clarke, Anthony
    Cobucci-Ponzano, Beatrice
    Cockburn, Darrell
    Coutinho, Pedro
    Czjzek, Mirjam
    Dassa, Bareket
    Davies, Gideon John
    Eijsink, Vincent
    Eklof, Jens
    Felice, Alfons
    Ficko-Blean, Elizabeth
    Pincher, Geoff
    Fontaine, Thierry
    Fujimoto, Zui
    Fujita, Kiyotaka
    Fushinobu, Shinya
    Gilbert, Harry
    Gloster, Tracey
    Goddard-Borger, Ethan
    Greig, Ian
    Hehemann, Jan-Hendrik
    Hemsworth, Glyn
    Henrissat, Bernard
    Hidaka, Masafumi
    Hurtado-Guerrero, Ramon
    Igarashi, Kiyohiko
    Ishida, Takuya
    Janecek, Stefan
    Jongkees, Seino
    Juge, Nathalie
    Kaneko, Satoshi
    Katayama, Takane
    Kitaoka, Motomitsu
    Konno, Naotake
    Kracher, Daniel
    Kulminskaya, Anna
    van Bueren, Alicia Lammerts
    Larsen, Sine
    Lee, Junho
    Linder, Markus
    LoLeggio, Leila
    Ludwig, Roland
    Luis, Ana
    GLYCOBIOLOGY, 2018, 28 (01) : 3 - 8
  • [33] Covalent Probes for Carbohydrate-Active Enzymes: From Glycosidases to Glycosyltransferases
    Xu, Yong
    Uddin, Najib
    Wagner, Gerd K.
    CHEMICAL GLYCOBIOLOGY, PT B: MONITORING GLYCANS AND THEIR INTERACTIONS, 2018, 598 : 237 - 265
  • [34] Generation of a Library of Carbohydrate-Active Enzymes for Plant Biomass Deconstruction
    Cardoso, Vania
    Bras, Joana L. A.
    Costa, Ines F.
    Ferreira, Luis M. A.
    Gama, Luis T.
    Vincentelli, Renaud
    Henrissat, Bernard
    Fontes, Carlos M. G. A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)
  • [35] The composition and expression of Carbohydrate-Active Enzymes in Rhizoctonia cerealis transcriptome
    Li, W.
    Ren, X.
    Sun, H.
    Wang, N.
    Chen, H.
    PHYTOPATHOLOGY, 2018, 108 (10) : 105 - 105
  • [36] Recent structural insights into the expanding world of carbohydrate-active enzymes
    Davies, GJ
    Gloster, TM
    Henrissat, B
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (06) : 637 - 645
  • [37] The abundance and variety of carbohydrate-active enzymes in the human gut microbiota
    El Kaoutari, Abdessamad
    Armougom, Fabrice
    Gordon, Jeffrey I.
    Raoult, Didier
    Henrissat, Bernard
    NATURE REVIEWS MICROBIOLOGY, 2013, 11 (07) : 497 - 504
  • [38] Cracking the code, slowly: the state of carbohydrate-active enzymes in 2013
    Davies, Gideon J.
    Henrissat, Bernard
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2013, 23 (05) : 649 - 651
  • [39] The abundance and variety of carbohydrate-active enzymes in the human gut microbiota
    Abdessamad El Kaoutari
    Fabrice Armougom
    Jeffrey I. Gordon
    Didier Raoult
    Bernard Henrissat
    Nature Reviews Microbiology, 2013, 11 : 497 - 504
  • [40] CANDy: Automated analysis of domain architectures in carbohydrate-active enzymes
    Windels, Alex
    Franceus, Jorick
    Pleiss, Juergen
    Desmet, Tom
    PLOS ONE, 2024, 19 (07):