Manifold Learning for Visualizing and Analyzing High-Dimensional Data

被引:29
|
作者
Zhang, Junping [1 ,2 ]
Huang, Hua [3 ]
Wang, Jue [4 ,5 ]
机构
[1] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Peoples R China
[4] Chinese Acad Sci, Key Lab Complex Syst & Intelligence Sci, Beijing 100864, Peoples R China
[5] Chinese Acad Sci, Inst Automat, Beijing 100864, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/MIS.2010.8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:54 / 61
页数:8
相关论文
共 50 条
  • [41] Smooth manifold extraction in high-dimensional data using a deep model
    Jian Zheng
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 4467 - 4476
  • [42] Smooth manifold extraction in high-dimensional data using a deep model
    Zheng, Jian
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (9) : 4467 - 4476
  • [43] Mapping high-dimensional data onto a relative distance plane - an exact method for visualizing and characterizing high-dimensional patterns
    Somorjai, RL
    Dolenko, B
    Demko, A
    Mandelzweig, M
    Nikulin, AE
    Baumgartner, R
    Pizzi, NJ
    JOURNAL OF BIOMEDICAL INFORMATICS, 2004, 37 (05) : 366 - 379
  • [44] Efficient Learning on High-dimensional Operational Data
    Samani, Forough Shahab
    Zhang, Hongyi
    Stadler, Rolf
    2019 15TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM), 2019,
  • [45] PCA learning for sparse high-dimensional data
    Hoyle, DC
    Rattray, M
    EUROPHYSICS LETTERS, 2003, 62 (01): : 117 - 123
  • [46] Metric Learning for High-Dimensional Tensor Data
    Shi Jiarong
    Jiao Licheng
    Shang Fanhua
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (03): : 495 - 498
  • [47] Similarity Learning for High-Dimensional Sparse Data
    Liu, Kuan
    Bellet, Aurelien
    Sha, Fei
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 653 - 662
  • [48] Group Learning for High-Dimensional Sparse Data
    Cherkassky, Vladimir
    Chen, Hsiang-Han
    Shiao, Han-Tai
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [49] Depthgram: Visualizing outliers in high-dimensional functional data with application to fMRI data exploration
    Aleman-Gomez, Yasser
    Arribas-Gil, Ana
    Desco, Manuel
    Elias, Antonio
    Romo, Juan
    STATISTICS IN MEDICINE, 2022, 41 (11) : 2005 - 2024
  • [50] Visualizing High-Dimensional Functions with Dense Maps
    Espadoto M.
    Rodrigues F.C.M.
    Hirata N.S.T.
    Telea A.C.
    SN Computer Science, 4 (3)