Relatively Compact Sets in Variable Exponent Morrey Spaces on Metric Spaces

被引:4
|
作者
Bandaliyev, Rovshan A. [1 ,2 ]
Gorka, Przemyslaw [3 ]
Guliyev, Vagif S. [1 ,2 ,4 ,5 ]
Sawano, Yoshihiro [6 ]
机构
[1] People Friendship Univ Russia, RUDN Univ, 6 Maklaya St, Moscow 117198, Russia
[2] NAS Azerbaijan Baku, Inst Math & Mech, Baku, Azerbaijan
[3] Warsaw Univ Technol, Dept Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[4] Dumlupinar Univ, Dept Math, Kutahya, Turkey
[5] Baku State Univ, Inst Appl Math, Baku, Azerbaijan
[6] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo, Japan
基金
俄罗斯基础研究基金会;
关键词
Metric measure spaces; variable exponent Lebesgue spaces; Morrey spaces; compactness; SINGULAR-OPERATORS; LEBESGUE SPACES; EMBEDDINGS;
D O I
10.1007/s00009-021-01828-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a characterization of the precompactness of sets in variable exponent Morrey spaces on bounded metric measure spaces. Totally bounded sets are characterized from several points of view for the case of variable exponent Morrey spaces over metric measure spaces. This characterization is new in the case of constant exponents.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Grand Herz–Morrey Spaces with Variable Exponent
    M. Sultan
    B. Sultan
    A. Hussain
    Mathematical Notes, 2023, 114 : 957 - 977
  • [12] VARIABLE EXPONENT SOBOLEV SPACES ON METRIC MEASURE SPACES
    Harjuletho, Petteri
    Hasto, Peter
    Pere, Mikko
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 79 - 94
  • [13] Maximal, Potential, and Singular Operators in the Generalized Variable Exponent Morrey Spaces on Unbounded Sets
    Guliyev V.S.
    Samko S.G.
    Journal of Mathematical Sciences, 2013, 193 (2) : 228 - 248
  • [14] Approximation by trigonometric polynomials in variable exponent Morrey spaces
    Guliyev, Vagif S.
    Ghorbanalizadeh, Arash
    Sawano, Yoshihiro
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (03) : 1265 - 1285
  • [15] Grand Herz-Morrey Spaces with Variable Exponent
    Sultan, M.
    Sultan, B.
    Hussain, A.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 957 - 977
  • [16] Approximation by trigonometric polynomials in variable exponent Morrey spaces
    Vagif S. Guliyev
    Arash Ghorbanalizadeh
    Yoshihiro Sawano
    Analysis and Mathematical Physics, 2019, 9 : 1265 - 1285
  • [17] Variable exponent Triebel-Lizorkin-Morrey spaces
    Gaetano, Antonio
    Kempka, Henning
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [18] Maximal and potential operators in variable exponent Morrey spaces
    Almeida, Alexandre
    Hasanov, Javanshir
    Samko, Stefan
    GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (02) : 195 - 208
  • [19] Weighted Morrey spaces of variable exponent and Riesz potentials
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 984 - 1002
  • [20] Duality of Herz-Morrey Spaces of Variable Exponent
    Mizuta, Yoshihiro
    FILOMAT, 2016, 30 (07) : 1891 - 1898