ZERO JORDAN PRODUCT DETERMINED BANACH ALGEBRAS

被引:2
|
作者
Alaminos, J. [1 ]
Bresar, M. [2 ,3 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal, Matemat, Granada 18071, Spain
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Koroska 160, Maribor 2000, Slovenia
关键词
C*-algebra; group algebra; zero Jordan product determined Banach algebra; zero product determined Banach algebra; symmetrically amenable Banach algebra; weakly amenable Banach algebra; LIE;
D O I
10.1017/S1446788719000478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Banach algebra A is said to be a zero Jordan product determined Banach algebra if, for every Banach space X, every bilinear map phi : A x A -> X satisfying phi(a, b) = 0 whenever a, b is an element of A are such that ab + ba = 0, is of the form phi(a, b) = sigma(ab + ba) for some continuous linear map sigma. We show that all C*-algebras and all group algebras L-1(G) of amenable locally compact groups have this property and also discuss some applications.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条