C*-algebra;
group algebra;
zero Jordan product determined Banach algebra;
zero product determined Banach algebra;
symmetrically amenable Banach algebra;
weakly amenable Banach algebra;
LIE;
D O I:
10.1017/S1446788719000478
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A Banach algebra A is said to be a zero Jordan product determined Banach algebra if, for every Banach space X, every bilinear map phi : A x A -> X satisfying phi(a, b) = 0 whenever a, b is an element of A are such that ab + ba = 0, is of the form phi(a, b) = sigma(ab + ba) for some continuous linear map sigma. We show that all C*-algebras and all group algebras L-1(G) of amenable locally compact groups have this property and also discuss some applications.
机构:
Kharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, IranKharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, Iran
Essmaili, M.
Rajaenejad, R.
论文数: 0引用数: 0
h-index: 0
机构:
Kharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, IranKharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, Iran
机构:
Kharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, IranKharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, Iran
Essmaili, M.
Rajaenejad, R.
论文数: 0引用数: 0
h-index: 0
机构:
Kharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, IranKharazmi Univ, Fac Math & Comp Sci, Dept Math, 50 Taleghani Ave, Tehran 15618, Iran