ZERO JORDAN PRODUCT DETERMINED BANACH ALGEBRAS

被引:2
|
作者
Alaminos, J. [1 ]
Bresar, M. [2 ,3 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal, Matemat, Granada 18071, Spain
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Koroska 160, Maribor 2000, Slovenia
关键词
C*-algebra; group algebra; zero Jordan product determined Banach algebra; zero product determined Banach algebra; symmetrically amenable Banach algebra; weakly amenable Banach algebra; LIE;
D O I
10.1017/S1446788719000478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Banach algebra A is said to be a zero Jordan product determined Banach algebra if, for every Banach space X, every bilinear map phi : A x A -> X satisfying phi(a, b) = 0 whenever a, b is an element of A are such that ab + ba = 0, is of the form phi(a, b) = sigma(ab + ba) for some continuous linear map sigma. We show that all C*-algebras and all group algebras L-1(G) of amenable locally compact groups have this property and also discuss some applications.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条
  • [1] Zero Jordan and Lie product determined of certain classes of Banach algebras
    Essmaili, M.
    Rajaenejad, R.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [2] Zero Jordan product determined algebras
    An, Guangyu
    Li, Jiankui
    He, Jun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 90 - 93
  • [3] Zero product determined Jordan algebras, I
    Grasic, Mateja
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (06): : 671 - 685
  • [4] Zero Product Determined Jordan Algebras, II
    Grasic, Mateja
    ALGEBRA COLLOQUIUM, 2015, 22 (01) : 109 - 118
  • [5] A Class of Zero Product Determined Banach Algebras
    Li, Jiankui
    Pan, Shaoze
    Su, Shanshan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [6] Zero Lie product determined Banach algebras
    Alaminos, J.
    Bresar, M.
    Extremera, J.
    Villena, A. R.
    STUDIA MATHEMATICA, 2017, 239 (02) : 189 - 199
  • [7] A Class of Zero Product Determined Banach Algebras
    Jiankui Li
    Shaoze Pan
    Shanshan Su
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [8] Strongly zero product determined Banach algebras
    Alaminos, J.
    Extremera, J.
    Godoy, M. L. C.
    Villena, A. R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 326 - 354
  • [9] Zero Lie product determined Banach algebras, II
    Alaminos, J.
    Bresar, M.
    Extremera, J.
    Villena, A. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (02) : 1498 - 1511
  • [10] Zero product determined of amalgamated duplication of Banach algebras
    Essmaili, M.
    Rajaenejad, R.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (07)