Procedures of Parameters' estimation of AR(1) models into lineal state-space models

被引:0
|
作者
Noomene, Rouhia [1 ]
机构
[1] Univ Politecn Cataluna, Dept Stat & Operat Res, Barcelona, Spain
关键词
state space model; Kalman filer; maximum likelihood; BHHH; BFGS and EM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this paper is to study how algorithms of optimization affect the parameters-estimation of Autoregressive AR(1)Models. In our research we have represented the AR(1) models in linear state space form and applied the Kalman Filters to estimate the different unknown parameters of the model. Many methods have been proposed by researchers for the estimation of the parameters in the case of the linear state space models. In our work we have emphasized on the estimation through the Maximum Likelihood (ML). Statisticians have used many algorithms to optimise the likelihood function and they have proposed many filters; publishing their results in many papers. In spite of the fact that this field is so extended, we have emphasized our study in the financial field. Two quasi-Newton algorithms: Berndt, Hall, Hall, and Hausman (BHHH) and Broyden-Fletcher-Goldfarb-Shanno (BFGS), and the Expectation-Maximization (EM) algorithm have been chosen for this study. A practical study of these algorithms applied to the maximization of likelihood by means of the Kalman Filter have been done. The results are focused on efficiency in time of computation and precision of the unknown parameters estimation. A simulation study has been carried out, using as true values the parameters of this model published in the literature, in order to test the efficiency and precision of our implemented algorithms.
引用
收藏
页码:995 / 999
页数:5
相关论文
共 50 条
  • [41] State-space models for optical imaging
    Myers, Kary L.
    Brockwell, Anthony E.
    Eddy, William F.
    STATISTICS IN MEDICINE, 2007, 26 (21) : 3862 - 3874
  • [42] State-Space Models for Control and Identification
    2005, Springer Verlag (308):
  • [43] DERIVATION OF STATE-SPACE MODELS OF CRYSTALLIZERS
    DEWOLF, S
    JAGER, J
    VISSER, B
    KRAMER, HJM
    BOSGRA, OH
    ACS SYMPOSIUM SERIES, 1990, 438 : 144 - 158
  • [44] Bootstrapping Periodic State-Space Models
    Guerbyenne, Hafida
    Hamdi, Faycal
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 374 - 401
  • [45] Initial Values in Estimation Procedures for State Space Models (SSMs)
    Alzghool, Raed
    Lin, Yan-Xia
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 307 - 313
  • [46] Probabilistic Recurrent State-Space Models
    Doerr, Andreas
    Daniel, Christian
    Schiegg, Martin
    Nguyen-Tuong, Duy
    Schaal, Stefan
    Toussaint, Marc
    Trimpe, Sebastian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [47] Inequality Constrained State-Space Models
    Qian, Hang
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (02) : 350 - 362
  • [48] DISTURBANCE SMOOTHER FOR STATE-SPACE MODELS
    KOOPMAN, SJ
    BIOMETRIKA, 1993, 80 (01) : 117 - 126
  • [49] A behavioral approach to the estimation problem and its applications to state-space models
    Bisiacco, Mauro
    Valcher, Maria Elena
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 167 - 172
  • [50] Identification of structured state-space models
    Yu, Chengpu
    Ljung, Lennart
    Verhaegen, Michel
    AUTOMATICA, 2018, 90 : 54 - 61