Constrained full-waveform inversion by model reparameterization

被引:0
|
作者
Guitton, Antoine [1 ]
Ayeni, Gboyega [2 ]
Diaz, Esteban [3 ]
机构
[1] Geoimaging Solut Inc, San Mateo, CA 94403 USA
[2] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
[3] Colorado Sch Mines, Ctr Wave Phenomena, Boulder, CO USA
关键词
SEISMIC-REFLECTION DATA; NONLINEAR INVERSION; FREQUENCY; DOMAIN; TOMOGRAPHY; MIGRATION; STRATEGY;
D O I
10.1190/GEO2011-0196.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The waveform inversion problem is inherently ill-posed. Traditionally, regularization schemes are used to address this issue. For waveform inversion, where the model is expected to have many details reflecting the physical properties of the Earth, regularization and data fitting can work in opposite directions: the former smoothing and the latter adding details to the model. We propose constraining estimated velocity fields by reparameterizing the model. This technique, also called model-space preconditioning, is based on directional Laplacian filters: It preserves most of the details of the velocity model while smoothing the solution along known geological dips. Preconditioning also yields faster convergence at early iterations. The Laplacian filters have the property to smooth or kill local planar events according to a local dip field. By construction, these filters can be inverted and used in a preconditioned waveform inversion strategy to yield geologically meaningful models. We illustrate with 2D synthetic and field data examples how preconditioning with nonstationary directional Laplacian filters outperforms traditional waveform inversion when sparse data are inverted and when sharp velocity contrasts are present. Adding geological information with preconditioning could benefit full-waveform inversion of real data whenever irregular geometry, coherent noise and lack of low frequencies are present.
引用
收藏
页码:R117 / R127
页数:11
相关论文
共 50 条
  • [31] Full-waveform inversion based on Kaniadakis statistics
    da Silva, Sergio Luiz E. F.
    Carvalho, Pedro Tiago C.
    de Araujo, Joao M.
    Corso, Gilberto
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [32] Full-waveform inversion for salt: A coming of age
    Wang P.
    Zhang Z.
    Mei J.
    Lin F.
    Huang R.
    Leading Edge, 2019, 38 (03): : 204 - 213
  • [33] Full-waveform inversion with randomized space shift
    Yang J.
    Li Y.E.
    Wei Y.
    Fu H.
    Liu Y.
    Leading Edge, 2019, 38 (03): : 197 - 203
  • [34] Bayesian full-waveform inversion with realistic priors
    Zhang, Xin
    Curtis, Andrew
    GEOPHYSICS, 2021, 86 (05) : A45 - A49
  • [35] Blocky regularization schemes for Full-Waveform Inversion
    Guitton, Antoine
    GEOPHYSICAL PROSPECTING, 2012, 60 (05) : 870 - 884
  • [36] An overview of full-waveform inversion in exploration geophysics
    Virieux, J.
    Operto, S.
    GEOPHYSICS, 2009, 74 (06) : WCC1 - WCC26
  • [37] Frequency multiscale full-waveform velocity inversion
    Zhang Wen-Sheng
    Luo Jia
    Teng Ji-Wen
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 58 (01): : 216 - 228
  • [38] Preconditioning of full-waveform inversion in viscoacoustic media
    Causse, E
    Mittet, R
    Ursin, B
    GEOPHYSICS, 1999, 64 (01) : 130 - 145
  • [39] Full-waveform inversion imaging of the human brain
    Lluís Guasch
    Oscar Calderón Agudo
    Meng-Xing Tang
    Parashkev Nachev
    Michael Warner
    npj Digital Medicine, 3
  • [40] Elastic full-waveform inversion for surface topography
    Qu, Yingming
    Li, Zhenchun
    Huang, Jianping
    Li, Jinli
    Guan, Zhe
    GEOPHYSICS, 2017, 82 (05) : R269 - R285