Target Set Selection Parameterized by Clique-Width and Maximum Threshold

被引:10
|
作者
Hartmann, Tim A. [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Informat 1, Aachen, Germany
关键词
D O I
10.1007/978-3-319-73117-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Target Set Selection problem takes as an input a graph G and a non-negative integer threshold thr(v) for every vertex v. A vertex v can get active as soon as at least thr(v) of its neighbors have been activated. The objective is to select a smallest possible initial set of vertices, the target set, whose activation eventually leads to the activation of all vertices in the graph. We show that Target Set Selection is in FPT when parameterized with the combined parameters clique-width of the graph and the maximum threshold value. This generalizes all previous FPT-membership results for the parameterization by maximum threshold, and thereby solves an open question from the literature. We stress that the time complexity of our algorithm is surprisingly well-behaved and grows only single-exponentially in the parameters.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 50 条
  • [21] Clique-width with an inactive label
    Meister, Daniel
    DISCRETE MATHEMATICS, 2014, 337 : 34 - 64
  • [22] Clique-width and parity games
    Obdrzalek, Jan
    Computer Science Logic, Proceedings, 2007, 4646 : 54 - 68
  • [23] Clique-width of point configurations
    Cagirici, Onur
    Hlineny, Petr
    Pokryvka, Filip
    Sankaran, Abhisekh
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 43 - 73
  • [24] The relative clique-width of a graph
    Lozin, Vadim
    Rautenbach, Dieter
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 846 - 858
  • [25] Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width
    Guillaume Ducoffe
    Algorithmica, 2022, 84 : 3489 - 3520
  • [26] Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width
    Ducoffe, Guillaume
    ALGORITHMICA, 2022, 84 (11) : 3489 - 3520
  • [27] Approximating clique-width and branch-width
    Oum, Sang-il
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 514 - 528
  • [28] Clique-width: Harnessing the power of atoms
    Dabrowski, Konrad K. K.
    Masarik, Tomas
    Novotna, Jana
    Paulusma, Daniel
    Rzazewski, Pawel
    JOURNAL OF GRAPH THEORY, 2023, 104 (04) : 769 - 810
  • [29] CLIQUE-WIDTH IS NP-COMPLETE
    Fellows, Michael R.
    Rosamond, Frances A.
    Rotics, Udi
    Szeider, Stefan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 909 - 939
  • [30] Bipartite Graphs of Large Clique-Width
    Korpelainen, Nicholas
    Lozin, Vadim V.
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 385 - +