A Deep Convolutional Neural Network with Selection Units for Super-Resolution

被引:97
|
作者
Choi, Jae-Seok [1 ]
Kim, Munchurl [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch EE, Daejeon, South Korea
关键词
IMAGE SUPERRESOLUTION;
D O I
10.1109/CVPRW.2017.153
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rectified linear units (ReLU) are known to be effective in many deep learning methods. Inspired by linear-mapping technique used in other super-resolution (SR) methods, we reinterpret ReLU into point-wise multiplication of an identity mapping and a switch, and finally present a novel nonlinear unit, called a selection unit (SU). While conventional ReLU has no direct control through which data is passed, the proposed SU optimizes this on-off switching control, and is therefore capable of better handling nonlinearity functionality than ReLU in a more flexible way. Our proposed deep network with SUs, called SelNet, was top-5th ranked in NTIRE2017 Challenge, which has a much lower computation complexity compared to the top-4 entries. Further experiment results show that our proposed SelNet outperforms our baseline only with ReLU (without SUs), and other state-of-the-art deep-learning-based SR methods.
引用
收藏
页码:1150 / 1156
页数:7
相关论文
共 50 条
  • [21] Convolutional Neural Network for Smoke Image Super-Resolution
    Liu, Maoshen
    Gu, Ke
    Qiao, Junfei
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [22] Obtaining Super-Resolution Satellites Images Based on Enhancement Deep Convolutional Neural Network
    Keshk, Hatem Magdy
    Yin, Xu-Cheng
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2021, 22 (01) : 195 - 202
  • [23] Predicting the Flow Fields in Meandering Rivers with a Deep Super-Resolution Convolutional Neural Network
    Yan, Xiaohui
    Du, Fu
    Zhang, Tianqi
    Cui, Qian
    Zhu, Zuhao
    Song, Ziming
    WATER, 2024, 16 (03)
  • [24] JS']JSENet: A deep convolutional neural network for joint image super-resolution and enhancement
    Lyu, Kejie
    Pan, Sicheng
    Li, Yingming
    Zhang, Zhongfei
    NEUROCOMPUTING, 2022, 489 : 570 - 583
  • [25] A terahertz image super-resolution reconstruction algorithm based on the deep convolutional neural network
    Li, Zeng
    Cen, Zhaofeng
    Li, Xiaotong
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [26] Obtaining Super-Resolution Satellites Images Based on Enhancement Deep Convolutional Neural Network
    Hatem Magdy Keshk
    Xu-Cheng Yin
    International Journal of Aeronautical and Space Sciences, 2021, 22 : 195 - 202
  • [27] Efficient multiquality super-resolution using a deep convolutional neural network for an FPGA implementation
    Kim, Min Beom
    Lee, Sanglyn
    Kim, Ilho
    Hong, Hee Jung
    Kim, Chang Gone
    Yoon, Soo Young
    JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2020, 28 (05) : 428 - 439
  • [28] A Deep Multitask Convolutional Neural Network for Remote Sensing Image Super-Resolution and Colorization
    Feng, Jianan
    Jiang, Qian
    Tseng, Ching-Hsun
    Jin, Xin
    Liu, Ling
    Zhou, Wei
    Yao, Shaowen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] DeepCS: Deep Convolutional Neural Network and SVM Based Single Image Super-Resolution
    Jebadurai, Jebaveerasingh
    Peter, J. Dinesh
    DATA DRIVEN TREATMENT RESPONSE ASSESSMENT AND PRETERM, PERINATAL, AND PAEDIATRIC IMAGE ANALYSIS, 2018, 11076 : 3 - 13
  • [30] Orthoimage Super-Resolution via Deep Convolutional Neural Networks
    Berezovsky, Vladimir
    Bai, Yunfeng
    Sharshov, Ivan
    Aleshko, Roman
    Shoshina, Kseniya
    Vasendina, Irina
    2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2022, : 263 - 268