Fast Fourier transform accelerated fast multipole algorithm

被引:48
|
作者
Elliott, WD
Board, JA
机构
[1] Duke University, Department of Electrical Engineering, Durham, NC 27706-0291
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1996年 / 17卷 / 02期
关键词
N-body problem; many-body problem; fast multipole algorithm; fast multipole method; tree codes; molecular dynamics; fast Fourier transform;
D O I
10.1137/S1064827594264259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes an O(p(2)log(2)(p)N) implementation of the fast multipole algorithm (FMA) for N-body simulations. This method of computing the FMA is faster than the original, which is O(p(4)N), where p is the number of terms retained in the truncated multipole expansion representation of the potential field of a collection of charged particles. The p term determines the accuracy of the calculation. The limiting O(p(4)) computation in the original FMA is a convolution-like operation on a matrix of multipole coefficients. This paper describes the implementation details of a conversion of this limiting computation to linear convolution, which is then computed in the Fourier domain using the fast Fourier transform (FFT), based on a method originally outlined by Greengard and Rokhlin. In addition, this paper describes a new block decomposition of the multipole expansion data that provides numerical stability and efficient computation. The resulting O(p(2)log(2)(p)) subroutine has a speedup of 2 on a sequential processor over the original method for p = 8, and a speedup of 4 for p = 16. The new subroutine vectorizes well and has a speedup of 3 on a vector processor at p = 8 and a speedup of 6 at p = 16.
引用
收藏
页码:398 / 415
页数:18
相关论文
共 50 条
  • [41] A NESTED VINOGRAD ALGORITHM OF THE FAST FOURIER-TRANSFORM
    GOLOVCHENKO, AG
    IVASHKO, AV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1990, 33 (01): : 94 - 96
  • [42] ALGORITHM-AS186 - FAST ALGORITHM OF DATA PERMUTATION IN DISCRETE FAST FOURIER-TRANSFORM
    FRANCIK, A
    KOSCIELNIAK, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1982, 31 (03) : 327 - 330
  • [43] Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm
    Garcia, J
    Mas, D
    Dorsch, RG
    APPLIED OPTICS, 1996, 35 (35): : 7013 - 7018
  • [44] Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm
    Dept. Interuniversitari d'Optica, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain
    不详
    Appl. Opt., 35 (7013-7018):
  • [45] Skeletonization Accelerated Multilevel Fast Multipole Algorithm for Volume Integral Equation
    Liu, Yan-Nan
    Pan, Xiao-Min
    Sheng, Xin-Qing
    2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 729 - 730
  • [46] ACCELERATED MOLECULAR-DYNAMICS SIMULATION WITH THE PARALLEL FAST MULTIPOLE ALGORITHM
    BOARD, JA
    CAUSEY, JW
    LEATHRUM, JF
    WINDEMUTH, A
    SCHULTEN, K
    CHEMICAL PHYSICS LETTERS, 1992, 198 (1-2) : 89 - 94
  • [47] FAST FOURIER TRANSFORM ALGORITHM USING FERMAT NUMBER TRANSFORM.
    Morikawa, Yoshitaka
    Hamada, Hiroshi
    Yamane, Nobumoto
    Systems, computers, controls, 1982, 13 (04): : 12 - 21
  • [48] Fast algorithm for determination of linear canonical transform and fractional Fourier transform
    Hennelly, BM
    Sheridan, JT
    PHOTON MANAGEMENT, 2004, 5456 : 472 - 483
  • [49] The fast Fourier transform and fast wavelet transform for patterns on the torus
    Bergmann, Ronny
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) : 39 - 51
  • [50] Accelerated A-EFIE with Perturbation Method Using Fast Fourier Transform
    Jia, Miao Miao
    Sun, Sheng
    Chew, Weng Cho
    2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 2148 - 2149