共 50 条
Electrochemical Performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) Alloys Used as the Anode of an Al-Air Battery
被引:7
|作者:
Zhang, Wenfeng
[1
,2
,3
,4
]
Hu, Tongrui
[2
]
Chen, Tao
[1
,3
]
Yang, Xiaowei
[2
]
Zhu, Yunfeng
[2
]
Yang, Tainian
[1
,3
]
Li, Liquan
[2
]
机构:
[1] CCCC Tianjin Port Engn Inst Co Ltd, Tianjin 300222, Peoples R China
[2] Nanjing Tech Univ, Coll Mat Sci & Engn, Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct, Nanjing 211816, Peoples R China
[3] CCCC First Harbor Engn Co Ltd, Shipping Serv Ctr, Bldg 8,Yuejin Rd, Tianjin 300461, Peoples R China
[4] Shipping Serv Ctr, Tianjin Key Lab Construct Operat & Maintenance Te, Bldg 8,Yuejin Rd, Tianjin 300461, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
aluminum alloy;
aluminum-air battery;
self-corrosion;
grain size;
electrochemical performance;
SN-GA ALLOY;
CORROSION BEHAVIOR;
MECHANICAL-PROPERTIES;
ALUMINUM ANODE;
PURE ALUMINUM;
AS-CAST;
ZN;
MN;
INDIUM;
MICROSTRUCTURE;
D O I:
10.3390/pr10020420
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
In this work, Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) alloys are prepared and used as the anode of an Al-air battery (AAB). We use scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) and optical microscopy (OM) to analyze the microstructures of the alloys. The hydrogen evolution rate, electrochemical performance (including polarization curves), electrochemical impedance spectroscopy (EIS), and battery performance of the samples are examined in the 4 M NaOH electrolyte. The experimental data display that the average grain size is significantly refined after adding manganese into the Al-1Zn-0.1In-0.1Sn-0.5Mg alloy, with a decrease in grain size from over 100 mu m to about 10 mu m. The improved activity of the aluminum anode in the AAB can be attributed to the introduction of manganese. The Al-1Zn-0.1In-0.1Sn-0.5Mg-0.1Mn alloy possesses the optimal overall performance with a lower self-corrosion rate (0.128 mL center dot cm(-2)center dot min(-1)), the highest working potential (1.630 V) and energy density (2415 mWh center dot g(-1)), a higher capacity (1481 mAh center dot g(-1)) and anodic utilization (49.75%).
引用
收藏
页数:11
相关论文