Time-optimal control by a quantum actuator

被引:16
|
作者
Aiello, Clarice D. [1 ]
Cappellaro, Paola [2 ,3 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Elect Res Lab, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
基金
美国国家科学基金会;
关键词
NUCLEAR-SPIN QUBITS; ELECTRONIC SPIN; COHERENCE TIME; SPECTROSCOPY; DYNAMICS; CENTERS;
D O I
10.1103/PhysRevA.91.042340
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Indirect control of qubits by a quantum actuator has been proposed as an appealing strategy to manipulate qubits that couple only weakly to external fields. While universal quantum control can be easily achieved when the actuator-qubit coupling is anisotropic, the efficiency of this approach is less clear. Here we analyze the time efficiency of quantum actuator control. We describe a strategy to find time-optimal control sequences by the quantum actuator and compare their gate times with direct driving, identifying regimes where the actuator control performs faster. As a paradigmatic example, we focus on a specific implementation based on the nitrogen-vacancy center electronic spin in diamond (the actuator) and nearby C-13 nuclear spins (the qubits).
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Time-optimal control fields for quantum systems with multiple avoided crossings
    Poggi, P. M.
    Lombardo, F. C.
    Wisniacki, D. A.
    PHYSICAL REVIEW A, 2015, 92 (05)
  • [22] Time-optimal control of a two-level dissipative quantum system
    Sugny, D.
    Kontz, C.
    Jauslin, H. R.
    PHYSICAL REVIEW A, 2007, 76 (02):
  • [23] Way to get the time of time-optimal control
    Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2001, 18 (02):
  • [24] Time-optimal control of articulated mechanisms
    Galicki, M
    Witte, H
    ROBOT CONTROL 1997, VOLS 1 AND 2, 1998, : 283 - 287
  • [25] TIME-OPTIMAL CONTROL OF FLYING SHEARS
    LEONHARD, W
    ARCHIV FUR ELEKTROTECHNIK, 1976, 58 (01): : 61 - 67
  • [26] A Nonlinear Time-Optimal Control Problem
    M. V. Topunov
    Automation and Remote Control, 2002, 63 : 1062 - 1069
  • [27] A random approach to time-optimal control
    Kulczycki, P
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1999, 121 (03): : 542 - 543
  • [28] On the Regularity Property of Time-Optimal Control
    Nikol’skii M.S.
    Computational Mathematics and Modeling, 2014, 25 (4) : 475 - 483
  • [29] Symbolic approximate time-optimal control
    Mazo, Manuel, Jr.
    Tabuada, Paulo
    SYSTEMS & CONTROL LETTERS, 2011, 60 (04) : 256 - 263
  • [30] A Nonlinear time-optimal control problem
    Topunov, MV
    AUTOMATION AND REMOTE CONTROL, 2002, 63 (07) : 1062 - 1069