Predicting Survival Outcomes in the Presence of Unlabeled Data

被引:3
|
作者
Haredasht, Fateme Nateghi [1 ,2 ,3 ]
Vens, Celine [1 ,2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Publ Hlth & Primary Care, Campus KULAK,Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
[2] IMEC, ITEC, Etienne Sabbelaan 51, B-8500 Kortrijk, Belgium
[3] Katholieke Univ Leuven, Etienne Sabbelaan 51, B-8500 Kortrijk, Belgium
关键词
Survival analysis; Semi-supervised learning; Random survival forest; Self-training; REGRESSION; MODEL;
D O I
10.1007/s10994-022-06257-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many clinical studies require the follow-up of patients over time. This is challenging: apart from frequently observed drop-out, there are often also organizational and financial challenges, which can lead to reduced data collection and, in turn, can complicate subsequent analyses. In contrast, there is often plenty of baseline data available of patients with similar characteristics and background information, e.g., from patients that fall outside the study time window. In this article, we investigate whether we can benefit from the inclusion of such unlabeled data instances to predict accurate survival times. In other words, we introduce a third level of supervision in the context of survival analysis, apart from fully observed and censored instances, we also include unlabeled instances. We propose three approaches to deal with this novel setting and provide an empirical comparison over fifteen real-life clinical and gene expression survival datasets. Our results demonstrate that all approaches are able to increase the predictive performance over independent test data. We also show that integrating the partial supervision provided by censored data in a semi-supervised wrapper approach generally provides the best results, often achieving high improvements, compared to not using unlabeled data.
引用
收藏
页码:4139 / 4157
页数:19
相关论文
共 50 条
  • [21] On multivariate calibration with unlabeled data
    Gujral, Paman
    Amrhein, Michael
    Ergon, Rolf
    Wise, Barry M.
    Bonvin, Dominique
    JOURNAL OF CHEMOMETRICS, 2011, 25 (08) : 456 - 465
  • [22] PREDICTING DEMAND FROM SALES DATA IN PRESENCE OF STOCKOUTS
    WECKER, WE
    MANAGEMENT SCIENCE, 1978, 24 (10) : 1043 - 1054
  • [23] Predicting correlated outcomes from molecular data
    Rauschenberger, Armin
    Glaab, Enrico
    BIOINFORMATICS, 2021, 37 (21) : 3889 - 3895
  • [24] Accuracy of Predicting Survival Outcomes in Palliative Radiation Therapy Patients
    Aggarwal, S.
    Prionas, N. D.
    Carter, J. N.
    Pradhan, P.
    Bui, J. L.
    von Eyben, R.
    Ho, C. K.
    Hancock, S. L.
    Soltys, S. G.
    Koong, A. C.
    Chang, D. T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : S148 - S149
  • [25] Limitations of nomogram models in predicting survival outcomes for glioma patients
    Xue, Jihao
    Liu, Hang
    Jiang, Lu
    Yin, Qijia
    Chen, Ligang
    Wang, Ming
    FRONTIERS IN IMMUNOLOGY, 2025, 16
  • [26] Predicting allograft survival: Abundant data, but insufficient knowledge?
    Furness, Peter N.
    TRANSPLANTATION, 2007, 83 (06) : 681 - 681
  • [27] Predicting Colorectal Cancer Survival: A Data Mining Approach
    Hosseini, Nooshin
    GASTROENTEROLOGY, 2014, 146 (05) : S688 - S689
  • [28] Data mining in predicting survival of kidney dialysis patients
    Shah, S
    Kusiak, A
    Dixon, B
    LASERS IN SURGERY: ADVANCED CHARACTERIZATION, THERAPEUTICS, AND SYSTEMS XIII, 2003, 4949 : 73 - 79
  • [29] Predicting survival from microarray data -: a comparative study
    Bovelstad, H. M.
    Nygard, S.
    Storvold, H. L.
    Aldrin, M.
    Borgan, O.
    Frigessi, A.
    Lingjaerde, O. C.
    BIOINFORMATICS, 2007, 23 (16) : 2080 - 2087
  • [30] In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images
    Christiansen, Eric M.
    Yang, Samuel J.
    Ando, D. Michael
    Javaherian, Ashkan
    Skibinski, Gaia
    Lipnick, Scott
    Mount, Elliot
    O'Neil, Alison
    Shah, Kevan
    Lee, Alicia K.
    Goyal, Piyush
    Fedus, William
    Poplin, Ryan
    Esteva, Andre
    Berndl, Marc
    Rubin, Lee L.
    Nelson, Philip
    Finkbeiner, Steven
    CELL, 2018, 173 (03) : 792 - +