Classification of two-dimensional fermionic and bosonic topological orders

被引:43
|
作者
Gu, Zheng-Cheng [1 ]
Wang, Zhenghan [2 ]
Wen, Xiao-Gang [1 ,3 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Calif Santa Barbara, Microsoft Stn Q, Santa Barbara, CA 93106 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 12期
关键词
QUANTUM HALL STATES; SUPERCONDUCTIVITY; ANYONS; MODEL;
D O I
10.1103/PhysRevB.91.125149
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The string-net approach by Levin and Wen, and the local unitary transformation approach by Chen, Gu, and Wen, provide ways to classify topological orders with gappable edge in two-dimensional (2D) bosonic systems. The two approaches reveal that the mathematical framework for (2 + 1)-dimensional (2 + 1)D bosonic topological order with gappable edge is closely related to unitary fusion category theory. In this paper, we generalize these systematic descriptions of topological orders to 2D fermion systems. We find a classification of (2 + 1)D fermionic topological orders with gappable edge in terms of the following set of data (N-k(ij), F-k(ij), F-jkn,chi delta(ijm,alpha beta), d(i)), which satisfy a set of nonlinear algebraic equations. The exactly soluble Hamiltonians can be constructed from the above data on any lattices to realize the corresponding topological orders. When F-k(ij) = 0, our result recovers the previous classification of 2 + 1D bosonic topological orders with gappable edge.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] SUPERSYMMETRY IN A TWO-DIMENSIONAL INTERACTING FERMIONIC MODEL
    SCHAPOSNIK, FA
    TROBO, ML
    PHYSICAL REVIEW D, 1988, 37 (06): : 1663 - 1669
  • [32] FERMIONIC DETERMINANT FOR MASSLESS TWO-DIMENSIONAL QCD
    BOTELHO, LCL
    MONTEIRO, MAR
    PHYSICAL REVIEW D, 1984, 30 (10): : 2242 - 2243
  • [33] Orders of topological generators of the K-group of a standard two-dimensional local field
    Ivanova O.Y.
    Journal of Mathematical Sciences, 2009, 156 (6) : 918 - 936
  • [34] Superdiffusive transport in two-dimensional fermionic wires
    Bhat, Junaid Majeed
    PHYSICAL REVIEW B, 2024, 110 (11)
  • [35] Exact topological classification of hamiltonian flows on smooth two-dimensional surfaces
    Bolsinov A.V.
    Fomenko A.T.
    Journal of Mathematical Sciences, 1999, 94 (4) : 1457 - 1476
  • [36] Two-dimensional topological semimetals
    冯晓龙
    朱娇娇
    吴维康
    杨声远
    Chinese Physics B, 2021, 30 (10) : 566 - 578
  • [37] Topological two-dimensional polymers
    Springer, Maximilian A.
    Liu, Tsai-Jung
    Kuc, Agnieszka
    Heine, Thomas
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (07) : 2007 - 2019
  • [38] Two-dimensional topological semimetals*
    Feng, Xiaolong
    Zhu, Jiaojiao
    Wu, Weikang
    Yang, Shengyuan A.
    CHINESE PHYSICS B, 2021, 30 (10)
  • [39] Two-dimensional topological photonics
    Khanikaev, Alexander B.
    Shvets, Gennady
    NATURE PHOTONICS, 2017, 11 (12) : 763 - 773
  • [40] THE COEXISTENCE OF CHOLESTERIC AND TWO-DIMENSIONAL ORDERS
    KLEMAN, M
    JOURNAL DE PHYSIQUE, 1985, 46 (07): : 1193 - 1203