Classification of two-dimensional fermionic and bosonic topological orders

被引:43
|
作者
Gu, Zheng-Cheng [1 ]
Wang, Zhenghan [2 ]
Wen, Xiao-Gang [1 ,3 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Calif Santa Barbara, Microsoft Stn Q, Santa Barbara, CA 93106 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 12期
关键词
QUANTUM HALL STATES; SUPERCONDUCTIVITY; ANYONS; MODEL;
D O I
10.1103/PhysRevB.91.125149
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The string-net approach by Levin and Wen, and the local unitary transformation approach by Chen, Gu, and Wen, provide ways to classify topological orders with gappable edge in two-dimensional (2D) bosonic systems. The two approaches reveal that the mathematical framework for (2 + 1)-dimensional (2 + 1)D bosonic topological order with gappable edge is closely related to unitary fusion category theory. In this paper, we generalize these systematic descriptions of topological orders to 2D fermion systems. We find a classification of (2 + 1)D fermionic topological orders with gappable edge in terms of the following set of data (N-k(ij), F-k(ij), F-jkn,chi delta(ijm,alpha beta), d(i)), which satisfy a set of nonlinear algebraic equations. The exactly soluble Hamiltonians can be constructed from the above data on any lattices to realize the corresponding topological orders. When F-k(ij) = 0, our result recovers the previous classification of 2 + 1D bosonic topological orders with gappable edge.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Theory of (2+1)-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries
    Lan, Tian
    Kong, Liang
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2016, 94 (15)
  • [2] Entanglement scaling in critical two-dimensional fermionic and bosonic systems
    Barthel, T.
    Chung, M. -C.
    Schollwoeck, U.
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [3] First and Second Sound in Two-Dimensional Bosonic and Fermionic Superfluids
    Salasnich, Luca
    Cappellaro, Alberto
    Furutani, Koichiro
    Tononi, Andrea
    Bighin, Giacomo
    SYMMETRY-BASEL, 2022, 14 (10):
  • [4] Microscopic Realization of Two-Dimensional Bosonic Topological Insulators
    Liu, Zheng-Xin
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [5] CONNECTION OF SOME TWO-DIMENSIONAL BOSONIC AND FERMIONIC MODELS TO SCALAR CURVATURE
    MISHRA, VK
    TANAKA, K
    PHYSICAL REVIEW D, 1987, 36 (12): : 3722 - 3724
  • [6] Classification of fermionic topological orders from congruence representations
    Cho, Gil Young
    Kim, Hee-Cheol
    Seo, Donghae
    You, Minyoung
    PHYSICAL REVIEW B, 2023, 108 (11)
  • [7] Two-Dimensional Density-Matrix Topological Fermionic Phases: Topological Uhlmann Numbers
    Viyuela, O.
    Rivas, A.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [8] Dynamically enriched topological orders in driven two-dimensional systems
    Potter, Andrew C.
    Morimoto, Takahiro
    PHYSICAL REVIEW B, 2017, 95 (15)
  • [9] Master equation approach to conductivity of bosonic and fermionic carriers in one- and two-dimensional lattices
    Kolovsky, Andrey R.
    ANNALEN DER PHYSIK, 2014, 526 (1-2) : 102 - 111
  • [10] Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model
    Chen, Cheng-Chien
    Muechler, Lukas
    Car, Roberto
    Neupert, Titus
    Maciejko, Joseph
    PHYSICAL REVIEW LETTERS, 2016, 117 (09)