Despite the anti-cancer effect of emodin observed in several cancers, the underlying molecular mechanism remains to be elucidated. In this study, we showed that emodin-inhibited NSCLC cell growth and increased phosphorylation of AMPK alpha and ERK1/2. In addition, emodin-inhibited ILK protein expression. The overexpression of ILK reversed the effect of emodin on cell growth inhibition. Furthermore, the blockade of AMPK by compound C abrogated, while metformin, an activator of AMPK, strengthened the effect of emodin on the inhibition of ILK expression. Interestingly, the inhibitor of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK1/2 (PD98059) attenuated emodin-induced phosphorylation of AMPK alpha. Moreover, emodin reduced the protein expression of Sp1 and AP-1 subunit c-Jun. Exogenous expression of Sp1 and c-Jun diminished emodin-reduced ILK protein expression. Emodin suppressed ILK promoter activity, which was not observed in cells overexpression of Sp1 and treated with compound C. Intriguingly, exogenous expression of c-Jun overcame the emodin-inhibited Sp1 protein expression. Collectively, our results demonstrate that emodin inhibits ILK expression through AMPK alpha-mediated reduction of Sp1 and c-Jun. Metformin enhances the effects of emodin. Exogenous expression of Sp1 and c-Jun resists emodin-inhibited ILK promoter activity and protein expression. In addition, the overexpression of c-Jun diminishes emodin-induced AMPK alpha signaling. Thus, the crosstalk of AMPK alpha and MEK/ERK1/2 signaling and the reciprocal interaction between Sp1 and c-Jun proteins contribute to the overall responses of emodin. This novel signaling axis may be a therapeutic potential for prevention and treatment of NSCLC. (C) 2015 Elsevier Inc. All rights reserved.