Substrate effect on the melting temperature of gold nanoparticles

被引:26
|
作者
Luo, Wenhua [1 ]
Su, Kalin [1 ]
Li, Kemin [1 ]
Liao, Gaohua [2 ]
Hu, Nengwen [2 ]
Jia, Ming [3 ]
机构
[1] Hunan Inst Sci & Technol, Coll Phys & Elect, Yueyang 414000, Peoples R China
[2] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[3] Cent South Univ, Sch Met Sci & Engn, Changsha 410083, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 136卷 / 23期
基金
中国国家自然科学基金;
关键词
SURFACE-TENSION; NANOSTRUCTURED MATERIALS; THERMODYNAMIC PROPERTIES; SIZE; PARTICLES; ENERGY; MODEL; AU; POINT; SHAPE;
D O I
10.1063/1.4729910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previous experimental, molecular dynamics, and thermodynamic researches on the melting temperature of Au nanoparticles on tungsten substrate provide entirely different results. To account for the substrate effect upon the melting point of nanoparticles, three different substrates were tested by using a thermodynamic model: tungsten, amorphous carbon, and graphite. The results reveal that the melting point suppression of a substrate-supported Au nanoparticle is principally ruled by the free surface-to-volume ratio of the particle or the contact angle between the particle and the substrate. When the contact angle theta is less than 90 degrees, a stronger size-dependent melting point depression compared with those for free nanoparticles is predicted; when the contact angle theta is greater than 90 degrees, the melting temperature of the supported Au nanoparticles are somewhat higher than those for free nanoparticles. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729910]
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Modeling the melting temperature, melting entropy and melting enthalpy of freestanding metallic nanoparticles
    Jiang, Xiao Bao
    Xiao, Bei Bei
    Lan, Rui
    Gu, Xiao Yan
    Sheng, Hong Chao
    Zhang, Xing Hua
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 241
  • [32] Influence of substrate morphology on the growth of gold nanoparticles
    Grochola, Gregory
    Snook, Ian K.
    Russo, Salvy P.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (15):
  • [33] Synthesis of pyramidal copper nanoparticles on gold substrate
    Ko, Wen-Yin
    Chen, Wei-Hung
    Tzeng, Shien-Der
    Gwo, Shangjr
    Lin, Kuan-Jiuh
    CHEMISTRY OF MATERIALS, 2006, 18 (26) : 6097 - 6099
  • [34] Effect of Melting Temperature on Wettability of Sn-Ag-Cu Alloys on Cu Substrate
    Erer, Ahmet Mustafa
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2018, 21 (03): : 587 - 589
  • [35] Effect of Substrate Temperature on Pattern Formation of Nanoparticles from Volatile Drops
    Parsa, Maryam
    Harmand, Souad
    Sefiane, Khellil
    Bigerelle, Maxence
    Deltombe, Raphael
    LANGMUIR, 2015, 31 (11) : 3354 - 3367
  • [36] A new plasmonic device made of gold nanoparticles and temperature responsive polymer brush on a silicon substrate
    Zengin, Adem
    Tamer, Ugur
    Caykara, Tuncer
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 448 : 215 - 221
  • [37] Production of supported gold and gold-silver nanoparticles by supercritical fluid reactive deposition: Effect of substrate properties
    Mueller, Sabrina
    Tuerk, Michael
    JOURNAL OF SUPERCRITICAL FLUIDS, 2015, 96 : 287 - 297
  • [38] THE EFFECT OF SUBSTRATE-TEMPERATURE ON THE BEHAVIOR OF GOLD AND SILVER ON THE 100 TUNGSTEN PLANE
    JOAG, DS
    JONES, JP
    JOURNAL DE PHYSIQUE, 1984, 45 (NC9): : 59 - 64
  • [39] Magnetic Properties of Gold Nanoparticles: A Room-Temperature Quantum Effect
    Greget, Romain
    Nealon, Gareth L.
    Vileno, Bertrand
    Turek, Philippe
    Meny, Christian
    Ott, Frederic
    Derory, Alain
    Voirin, Emilie
    Riviere, Eric
    Rogalev, Andrei
    Wilhelm, Fabrice
    Joly, Loic
    Knafo, William
    Ballon, Geraldine
    Terazzi, Emmanuel
    Kappler, Jean-Paul
    Donnio, Bertrand
    Gallani, Jean-Louis
    CHEMPHYSCHEM, 2012, 13 (13) : 3092 - 3097
  • [40] Synthesis of large uniform gold and core–shell gold–silver nanoparticles: Effect of temperature control
    I. A. Tiunov
    M. V. Gorbachevskyy
    D. S. Kopitsyn
    M. S. Kotelev
    E. V. Ivanov
    V. A. Vinokurov
    A. A. Novikov
    Russian Journal of Physical Chemistry A, 2016, 90 : 152 - 157