Surviving time estimates of local classical solutions to compressible Euler equations with logarithmic equation of state

被引:3
|
作者
Cheung, Ka Luen [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, 10 Lo Ping Rd, Hong Kong, Peoples R China
关键词
Surviving time; Euler equations; Logarithmic equation of state; Classical solutions; Cauchy problem; SMOOTH SOLUTIONS; RIEMANN PROBLEM; BLOWUP; SINGULARITIES; IBVP;
D O I
10.1016/j.jmaa.2022.126458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two sets of initial conditions that guarantee a positive lower bound and a finite upper bound of existence time of local classical solutions to multidimensional compressible Euler equations with Logarithmic equation of state are established. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Analytical Blowup Solutions to the Compressible Euler Equations with Time-depending Damping
    Jian-wei Dong
    Guang-pu Lou
    Qiao Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 568 - 578
  • [32] Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state
    Sun, Meina
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 53
  • [33] Robust second-order approximation of the compressible Euler equations with an arbitrary equation of state
    Clayton, Bennett
    Guermond, Jean-Luc
    Maier, Matthias
    Popov, Bojan
    Tovar, Eric J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 478
  • [34] Classical solutions for a logarithmic fractional diffusion equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06): : 901 - 924
  • [35] LOCAL CLASSICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES-SMOLUCHOWSKI EQUATIONS WITH VACUUM
    Huang, Bingyuan
    Ding, Shijin
    Wen, Huanyao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 1717 - 1752
  • [36] A VARIATIONAL TIME DISCRETIZATION FOR COMPRESSIBLE EULER EQUATIONS
    Cavalletti, Fabio
    Sedjro, Marc
    Westdickenberg, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (07) : 5083 - 5155
  • [37] Weak solutions to the compressible Euler equation with an asymptotic γ-law
    Makino, T
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2001, 41 (03): : 557 - 592
  • [38] Remarks on spherically symmetric solutions of the compressible Euler equations
    Chen, GQ
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 243 - 259
  • [39] Entropies and weak solutions of the compressible isentropic Euler equations
    Chen, G.-Q.
    Lefloch, P. G.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 324 (10):
  • [40] Perturbational blowup solutions to the compressible Euler equations with damping
    Cheung, Ka Luen
    SPRINGERPLUS, 2016, 5 : 1 - 9