An Integrated Statistical-Machine Learning Approach for Runoff Prediction

被引:58
|
作者
Singh, Abhinav Kumar [1 ]
Kumar, Pankaj [1 ]
Ali, Rawshan [2 ]
Al-Ansari, Nadhir [3 ]
Vishwakarma, Dinesh Kumar [4 ]
Kushwaha, Kuldeep Singh [5 ]
Panda, Kanhu Charan [6 ]
Sagar, Atish [7 ]
Mirzania, Ehsan [8 ]
Elbeltagi, Ahmed [9 ]
Kuriqi, Alban [10 ,11 ]
Heddam, Salim [12 ]
机构
[1] GB Pant Univ Agr & Technol, Dept Soil & Water Conservat Engn, Pantnagar 263145, Uttar Pradesh, India
[2] Erbil Polytech Univ, Koya Tech Inst, Dept Petr, Erbil 44001, Iraq
[3] Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, S-97187 Lulea, Sweden
[4] GB Pant Univ Agr & Technol, Dept Irrigat & Drainage Engn, Pantnagar 263145, Uttar Pradesh, India
[5] Cent Univ Jharkhand, Ctr Water Engn & Management, Ranchi 835205, Bihar, India
[6] Banaras Hindu Univ, Inst Agr Sci, Dept Agr Engn, Varanasi 221005, Uttar Pradesh, India
[7] ICAR Indian Agr Res Inst, Div Agr Engn, New Delhi 110012, India
[8] Univ Tabriz, Dept Water Engn, Fac Agr, Tabriz 5166616471, Iran
[9] Mansoura Univ, Agr Engn Dept, Fac Agr, Mansoura 35516, Egypt
[10] Univ Lisbon, Inst Super Tecn, CERIS, P-1649004 Lisbon, Portugal
[11] Univ Business & Technol, Civil Engn Dept, Pristina 10000, Kosovo
[12] Univ 20 Aout 1955, Fac Sci, Lab Res Biodivers Interact Ecosyst & Biotechnol 1, Hydraul Div,Agron Dept, Route El Hadaik, Skikda 21000, Algeria
关键词
MARS; SVM; RF; rainfall; runoff; rainfall-runoff modeling; DAILY PAN-EVAPORATION; ARTIFICIAL NEURAL-NETWORKS; SUPPORT-VECTOR-MACHINE; DAILY REFERENCE EVAPOTRANSPIRATION; SEDIMENT LOAD PREDICTION; SOIL-TEMPERATURE; RIVER-BASIN; METEOROLOGICAL DATA; INFERENCE SYSTEM; RANDOM FOREST;
D O I
10.3390/su14138209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nowadays, great attention has been attributed to the study of runoff and its fluctuation over space and time. There is a crucial need for a good soil and water management system to overcome the challenges of water scarcity and other natural adverse events like floods and landslides, among others. Rainfall-runoff (R-R) modeling is an appropriate approach for runoff prediction, making it possible to take preventive measures to avoid damage caused by natural hazards such as floods. In the present study, several data-driven models, namely, multiple linear regression (MLR), multiple adaptive regression splines (MARS), support vector machine (SVM), and random forest (RF), were used for rainfall-runoff prediction of the Gola watershed, located in the south-eastern part of the Uttarakhand. The rainfall-runoff model analysis was conducted using daily rainfall and runoff data for 12 years (2009 to 2020) of the Gola watershed. The first 80% of the complete data was used to train the model, and the remaining 20% was used for the testing period. The performance of the models was evaluated based on the coefficient of determination (R-2), root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and percent bias (PBAIS) indices. In addition to the numerical comparison, the models were evaluated. Their performances were evaluated based on graphical plotting, i.e., time-series line diagram, scatter plot, violin plot, relative error plot, and Taylor diagram (TD). The comparison results revealed that the four heuristic methods gave higher accuracy than the MLR model. Among the machine learning models, the RF (RMSE (m(3)/s), R-2, NSE, and PBIAS (%) = 6.31, 0.96, 0.94, and -0.20 during the training period, respectively, and 5.53, 0.95, 0.92, and -0.20 during the testing period, respectively) surpassed the MARS, SVM, and the MLR models in forecasting daily runoff for all cases studied. The RF model outperformed in all four models' training and testing periods. It can be summarized that the RF model is best-in-class and delivers a strong potential for the runoff prediction of the Gola watershed.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] A machine learning approach for fast mode decision in HEVC intra prediction based on statistical features
    Nair, Preethi S.
    Rao, K. R.
    Nair, Madhu S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2095 - 2106
  • [32] Performance Prediction of Learning Programming - Machine Learning Approach
    Au, Thien-Wan
    Salihin, Rahim
    Saiful, Omar
    30TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION, ICCE 2022, VOL 2, 2022, : 96 - 105
  • [33] Statistical methods for river runoff prediction
    Pisarenko V.F.
    Lyubushin A.A.
    Bolgov M.V.
    Rukavishnikova T.A.
    Kanyu S.
    Kanevskii M.F.
    Savel'eva E.A.
    Dem'yanov V.V.
    Zalyapin I.V.
    Water Resources, 2005, 32 (2) : 115 - 126
  • [34] An integrated machine learning framework for hospital readmission prediction
    Jiang, Shancheng
    Chin, Kwai-Sang
    Qu, Gang
    Tsui, Kwok L.
    KNOWLEDGE-BASED SYSTEMS, 2018, 146 : 73 - 90
  • [35] Integrated Machine Learning Approach for the Early Prediction of Pressure Ulcers in Spinal Cord Injury Patients
    Kim, Yuna
    Lim, Myungeun
    Kim, Seo Young
    Kim, Tae Uk
    Lee, Seong Jae
    Bok, Soo-Kyung
    Park, Soojun
    Han, Youngwoong
    Jung, Ho-Youl
    Hyun, Jung Keun
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (04)
  • [36] Prediction of Machine Inactivation Status Using Statistical Feature Extraction and Machine Learning
    Borith, Taing
    Bakhit, Sadirbaev
    Nasridinov, Aziz
    Yoo, Kwan-Hee
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 18
  • [37] A Novel Machine Learning Approach For Bug Prediction
    Puranik, Shruthi
    Deshpande, Pranav
    Chandrasekaran, K.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATIONS, 2016, 93 : 924 - 930
  • [38] A Machine Learning Approach to TCP Throughput Prediction
    Mirza, Mariyam
    Sommers, Joel
    Barford, Paul
    Zhu, Xiaojin
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2010, 18 (04) : 1026 - 1039
  • [39] A machine learning approach for the prediction of pulmonary hypertension
    Leha, Andreas
    Hellenkamp, Kristian
    Unsoeld, Bernhard
    Mushemi-Blake, Sitali
    Shah, Ajay M.
    Hasenfuss, Gerd
    Seidler, Tim
    PLOS ONE, 2019, 14 (10):
  • [40] A Machine Learning Approach to Database Failure Prediction
    Karakurt, Ismet
    Ozer, Sertay
    Ulusinan, Taner
    Ganiz, Murat Can
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 1030 - 1035