An Integrated Statistical-Machine Learning Approach for Runoff Prediction

被引:58
|
作者
Singh, Abhinav Kumar [1 ]
Kumar, Pankaj [1 ]
Ali, Rawshan [2 ]
Al-Ansari, Nadhir [3 ]
Vishwakarma, Dinesh Kumar [4 ]
Kushwaha, Kuldeep Singh [5 ]
Panda, Kanhu Charan [6 ]
Sagar, Atish [7 ]
Mirzania, Ehsan [8 ]
Elbeltagi, Ahmed [9 ]
Kuriqi, Alban [10 ,11 ]
Heddam, Salim [12 ]
机构
[1] GB Pant Univ Agr & Technol, Dept Soil & Water Conservat Engn, Pantnagar 263145, Uttar Pradesh, India
[2] Erbil Polytech Univ, Koya Tech Inst, Dept Petr, Erbil 44001, Iraq
[3] Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, S-97187 Lulea, Sweden
[4] GB Pant Univ Agr & Technol, Dept Irrigat & Drainage Engn, Pantnagar 263145, Uttar Pradesh, India
[5] Cent Univ Jharkhand, Ctr Water Engn & Management, Ranchi 835205, Bihar, India
[6] Banaras Hindu Univ, Inst Agr Sci, Dept Agr Engn, Varanasi 221005, Uttar Pradesh, India
[7] ICAR Indian Agr Res Inst, Div Agr Engn, New Delhi 110012, India
[8] Univ Tabriz, Dept Water Engn, Fac Agr, Tabriz 5166616471, Iran
[9] Mansoura Univ, Agr Engn Dept, Fac Agr, Mansoura 35516, Egypt
[10] Univ Lisbon, Inst Super Tecn, CERIS, P-1649004 Lisbon, Portugal
[11] Univ Business & Technol, Civil Engn Dept, Pristina 10000, Kosovo
[12] Univ 20 Aout 1955, Fac Sci, Lab Res Biodivers Interact Ecosyst & Biotechnol 1, Hydraul Div,Agron Dept, Route El Hadaik, Skikda 21000, Algeria
关键词
MARS; SVM; RF; rainfall; runoff; rainfall-runoff modeling; DAILY PAN-EVAPORATION; ARTIFICIAL NEURAL-NETWORKS; SUPPORT-VECTOR-MACHINE; DAILY REFERENCE EVAPOTRANSPIRATION; SEDIMENT LOAD PREDICTION; SOIL-TEMPERATURE; RIVER-BASIN; METEOROLOGICAL DATA; INFERENCE SYSTEM; RANDOM FOREST;
D O I
10.3390/su14138209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nowadays, great attention has been attributed to the study of runoff and its fluctuation over space and time. There is a crucial need for a good soil and water management system to overcome the challenges of water scarcity and other natural adverse events like floods and landslides, among others. Rainfall-runoff (R-R) modeling is an appropriate approach for runoff prediction, making it possible to take preventive measures to avoid damage caused by natural hazards such as floods. In the present study, several data-driven models, namely, multiple linear regression (MLR), multiple adaptive regression splines (MARS), support vector machine (SVM), and random forest (RF), were used for rainfall-runoff prediction of the Gola watershed, located in the south-eastern part of the Uttarakhand. The rainfall-runoff model analysis was conducted using daily rainfall and runoff data for 12 years (2009 to 2020) of the Gola watershed. The first 80% of the complete data was used to train the model, and the remaining 20% was used for the testing period. The performance of the models was evaluated based on the coefficient of determination (R-2), root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and percent bias (PBAIS) indices. In addition to the numerical comparison, the models were evaluated. Their performances were evaluated based on graphical plotting, i.e., time-series line diagram, scatter plot, violin plot, relative error plot, and Taylor diagram (TD). The comparison results revealed that the four heuristic methods gave higher accuracy than the MLR model. Among the machine learning models, the RF (RMSE (m(3)/s), R-2, NSE, and PBIAS (%) = 6.31, 0.96, 0.94, and -0.20 during the training period, respectively, and 5.53, 0.95, 0.92, and -0.20 during the testing period, respectively) surpassed the MARS, SVM, and the MLR models in forecasting daily runoff for all cases studied. The RF model outperformed in all four models' training and testing periods. It can be summarized that the RF model is best-in-class and delivers a strong potential for the runoff prediction of the Gola watershed.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Crop Type Prediction: A Statistical and Machine Learning Approach
    Bhuyan, Bikram Pratim
    Tomar, Ravi
    Singh, T. P.
    Cherif, Amar Ramdane
    SUSTAINABILITY, 2023, 15 (01)
  • [2] Statistical Prediction and Machine Learning
    Govind, Sabeen
    Chen, John Tuhao
    Chen, Lincy Y.
    Lee, Clement
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2025,
  • [3] Statistical Prediction and Machine Learning
    Jogo, Fransiskus Serfian
    TECHNOMETRICS, 2025, 67 (01) : 184 - 185
  • [4] An Integrated Machine Learning Approach for Congestive Heart Failure Prediction
    Singh, M. Sheetal
    Thongam, Khelchandra
    Choudhary, Prakash
    Bhagat, P. K.
    DIAGNOSTICS, 2024, 14 (07)
  • [5] Statistical and Machine Learning Approach in Forex Prediction Based on Empirical Data
    Sidehabi, Sitti Wetenriajeng
    Indrabayu
    Tandungan, Sofyan
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND CYBERNETICS, 2016, : 63 - 68
  • [6] Hybrid statistical-machine learning ammonia forecasting in continuous activated sludge treatment for improved process control
    Newhart, Kathryn B.
    Marks, Christopher A.
    Rauch-Williams, Tanja
    Cath, Tzahi Y.
    Hering, Amanda S.
    JOURNAL OF WATER PROCESS ENGINEERING, 2020, 37
  • [7] Machine Learning: A Practical Approach on the Statistical Learning
    Liu, Shin Ta
    TECHNOMETRICS, 2020, 62 (04) : 560 - 561
  • [8] Phenotype Prediction of DNA Sequence Data: A Machine- and Statistical Learning Approach
    Mapiye, Darlington
    Mokoatle, Mpho
    Makoro, Dineo
    Muller, Stephanie J.
    Dlamini, Gciniwe S.
    Mashiyane, James
    Joseph, Lavina
    Ismail, Nazir
    Omar, Shaheed Vally
    2020 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2020, : 169 - 178
  • [9] COVID-19 from symptoms to prediction: A statistical and machine learning approach
    Fakieh, Bahjat
    Saleem, Farrukh
    Computers in Biology and Medicine, 2024, 182
  • [10] Short-term prediction of traffic state: Statistical approach versus machine learning approach
    Rasaizadi, A.
    Sherafat, E.
    Seyedabrishami, S. E.
    SCIENTIA IRANICA, 2022, 29 (03) : 1095 - 1106