Estimation for the parameter of a class of diffusion processes

被引:0
|
作者
Wei, Chao [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2020年 / 43期
关键词
maximum likelihood estimation; ergodic diffusion processes; strong consistency; asymptotic normality; LEAST-SQUARES ESTIMATOR; ASYMPTOTIC-BEHAVIOR; PROCESSES DRIVEN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the parameter estimation problem for a stationary ergodic diffusion process with drift coefficient a(X-t, theta) and diffusion coefficient b(X-t) under the case of continuous-time observations. Firstly, we find a closed interval on which the likelihood function is continuous and does not attain the maximum at two endpoints of this interval. Secondly, we prove that the maximum likelihood estimator exists in the interval when the sample size is large enough. Finally, the strong consistency of the estimator and the asymptotic normality of the error of estimation are proved. All of the results are obtained by applying the maximal inequality for martingales, Borel-Cantelli lemma and uniform ergodic theorem.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [41] Parameter estimation for industrial polymerization processes
    Bindlish, R
    Rawlings, JB
    Young, RE
    AICHE JOURNAL, 2003, 49 (08) : 2071 - 2078
  • [42] Parameter estimation for switched counting processes
    Franz, J
    Magiera, R
    STATISTICS, 2001, 35 (04) : 371 - 393
  • [43] Parameter Estimation of Binned Hawkes Processes
    Shlomovich, Leigh
    Cohen, Edward A. K.
    Adams, Niall
    Patel, Lekha
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (04) : 990 - 1000
  • [44] On parameter estimation for critical affine processes
    Barczy, Matyas
    Doering, Leif
    Li, Zenghu
    Pap, Gyula
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 647 - 696
  • [45] Semimartingale functions of a class of diffusion processes
    Mania, M
    Tevzadze, R
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (02) : 337 - 343
  • [46] 2-PARAMETER PROCESSES OF THE DIFFUSION TYPE
    GIKHMAN, II
    DOKLADY AKADEMII NAUK SSSR, 1984, 278 (01): : 20 - 23
  • [47] Cooperative filtering for parameter identification of diffusion processes
    You, Jie
    Zhang, Fumin
    Wu, Wencen
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4327 - 4333
  • [48] GIRSANOVS THEOREM FOR A CLASS OF PROCESSES WITH MULTIDIMENSIONAL PARAMETER
    GUYON, X
    PRUM, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (08): : 565 - 567
  • [50] ESTIMATION OF TREND PARAMETER OF A STOCHASTIC DIFFUSION EQUATION
    KULINICH, GL
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (02): : 393 - 397