Estimation for the parameter of a class of diffusion processes

被引:0
|
作者
Wei, Chao [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
关键词
maximum likelihood estimation; ergodic diffusion processes; strong consistency; asymptotic normality; LEAST-SQUARES ESTIMATOR; ASYMPTOTIC-BEHAVIOR; PROCESSES DRIVEN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the parameter estimation problem for a stationary ergodic diffusion process with drift coefficient a(X-t, theta) and diffusion coefficient b(X-t) under the case of continuous-time observations. Firstly, we find a closed interval on which the likelihood function is continuous and does not attain the maximum at two endpoints of this interval. Secondly, we prove that the maximum likelihood estimator exists in the interval when the sample size is large enough. Finally, the strong consistency of the estimator and the asymptotic normality of the error of estimation are proved. All of the results are obtained by applying the maximal inequality for martingales, Borel-Cantelli lemma and uniform ergodic theorem.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [1] Estimation for the parameter of a class of diffusion processes
    Wei, Chao (chaowei0806@aliyun.com), 1600, Forum-Editrice Universitaria Udinese SRL (43):
  • [2] A Multiresolution Method for Parameter Estimation of Diffusion Processes
    Kou, S. C.
    Olding, Benjamin P.
    Lysy, Martin
    Liu, Jun S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1558 - 1574
  • [3] Parameter estimation and bias correction for diffusion processes
    Tang, Cheng Yong
    Chen, Song Xi
    JOURNAL OF ECONOMETRICS, 2009, 149 (01) : 65 - 81
  • [4] On parameter estimation for switching ergodic diffusion processes
    Kutoyants, YA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 925 - 930
  • [5] Unbiased estimation using a class of diffusion processes
    Ruzayqat, Hamza
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kantas, Nikolas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [6] Unbiased Adaptive LASSO Parameter Estimation for Diffusion Processes
    Lindstrom, Erik
    Hook, Josef
    IFAC PAPERSONLINE, 2018, 51 (15): : 257 - 262
  • [7] Parameter estimation for generalized diffusion processes with reflected boundary
    ZANG QingPei
    ZHANG LiXin
    ScienceChina(Mathematics), 2016, 59 (06) : 1163 - 1174
  • [8] Maximum likelihood estimation for the drift parameter in diffusion processes
    Wei, Chao
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (05): : 699 - 710
  • [9] Parameter estimation for generalized diffusion processes with reflected boundary
    Zang QingPei
    Zhang LiXin
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (06) : 1163 - 1174
  • [10] Parameter estimation for generalized diffusion processes with reflected boundary
    QingPei Zang
    LiXin Zhang
    Science China Mathematics, 2016, 59 : 1163 - 1174