Spatially nonuniform phases in the one-dimensional SU(n) Hubbard model for commensurate fillings

被引:25
|
作者
Szirmai, E. [1 ]
Legeza, Oe. [1 ]
Solyom, J. [1 ]
机构
[1] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
关键词
D O I
10.1103/PhysRevB.77.045106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The one-dimensional repulsive SU(n) Hubbard model is investigated analytically by bosonization approach and numerically using the density-matrix renormalization-group method for n=3, 4, and 5 for commensurate fillings f=p/q, where p and q are relatively primes. It is shown that the behavior of the system is drastically different depending on whether q > n, q=n, or q < n. When q > n, the umklapp processes are irrelevant and the model is equivalent to an n-component Luttinger liquid with central charge c=n. When q=n, the charge and spin modes are decoupled, the umklapp processes open a charge gap for finite U > 0, whereas the spin modes remain gapless and the central charge c=n - 1. The translational symmetry is not broken in the ground state for any n. On the other hand, when q < n, the charge and spin modes are coupled, the umklapp processes open gaps in all excitation branches, and a spatially nonuniform ground state develops. Bond-ordered dimerized, trimerized, or tetramerized phases are found depending on the filling.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Supersolid phases in the one-dimensional extended soft-core bosonic Hubbard model
    Batrouni, G. G.
    Herbert, F.
    Scalettar, R. T.
    PHYSICAL REVIEW LETTERS, 2006, 97 (08)
  • [22] Using entanglement to discern phases in the disordered one-dimensional Bose-Hubbard model
    Goldsborough, Andrew M.
    Roemer, Rudolf A.
    EPL, 2015, 111 (02)
  • [23] Competing Supersolid and Haldane Insulator Phases in the Extended One-Dimensional Bosonic Hubbard Model
    Batrouni, G. G.
    Scalettar, R. T.
    Rousseau, V. G.
    Gremaud, B.
    PHYSICAL REVIEW LETTERS, 2013, 110 (26)
  • [24] Ground state phases of the half-filled one-dimensional extended Hubbard model
    Sandvik, AW
    Balents, L
    Campbell, DK
    PHYSICAL REVIEW LETTERS, 2004, 92 (23) : 236401 - 1
  • [25] Integrable variant of the one-dimensional Hubbard model
    Guan, XW
    Foerster, A
    Links, J
    Zhou, HQ
    Tonel, AP
    McKenzie, RH
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) : 3445 - 3457
  • [26] DENSITY OF STATES IN ONE-DIMENSIONAL HUBBARD MODEL
    ELK, K
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1972, 50 (02): : 439 - &
  • [27] SUSCEPTIBILITY OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    MILA, F
    PENC, K
    PHYSICAL REVIEW B, 1995, 51 (03): : 1997 - 2000
  • [28] EXCITATION SPECTRUM OF ONE-DIMENSIONAL HUBBARD MODEL
    COLL, CF
    PHYSICAL REVIEW B, 1974, 9 (05): : 2150 - 2158
  • [29] Umklapp scattering in the one-dimensional Hubbard model
    Liu, Tong
    Wang, Kang
    Chi, Runze
    Liu, Yang
    Liao, Haijun
    Xiang, T.
    PHYSICAL REVIEW B, 2023, 108 (12)
  • [30] EXCITATION SPECTRUM IN ONE-DIMENSIONAL HUBBARD MODEL
    OVCHINNIKOV, AA
    SOVIET PHYSICS JETP-USSR, 1970, 30 (06): : 1160 - +