q-exponential fitting for distributions of family names

被引:11
|
作者
Yamada, Hiroaki S. [1 ]
Iguchi, Kazumoto [2 ]
机构
[1] Yamada Phys Res Lab, Niigata 9502002, Japan
[2] Kazumotolguchi Res Lab, Anan, Tokushima 7740003, Japan
关键词
q-exponential property; family names; Zipf's law; scale-free network;
D O I
10.1016/j.physa.2007.11.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the applicability of the q-exponential function for the distribution of family names. We mainly focus on the rank-size distribution of Japanese family names. The result supports the fact that the q-exponential distribution is relevant to the distribution of family names that is understood until now to obey power-law distribution (Zipf law). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1628 / 1636
页数:9
相关论文
共 50 条
  • [31] Modelling train delays with q-exponential functions
    Briggs, Keith
    Beck, Christian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 378 (02) : 498 - 504
  • [32] A multiple q-exponential differential operational identity
    Zhiguo Liu
    Acta Mathematica Scientia, 2023, 43 : 2449 - 2470
  • [33] The uncertainty measure for q-exponential distribution function
    Ou CongJie
    El Kaabouchi, Aziz
    Wang, QiuPing Alexandre
    Chen JinCan
    CHINESE SCIENCE BULLETIN, 2013, 58 (13): : 1524 - 1528
  • [34] A multiple q-exponential differential operational identity
    Liu, Zhiguo
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2449 - 2470
  • [35] Random networks with q-exponential degree distribution
    Sampaio Filho, Cesar I. N.
    Bastos, Marcio M.
    Herrmann, Hans J.
    Moreira, Andre A.
    Andrade Jr, Jose S.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [36] Two generalized q-exponential operators and their applications
    Nadia Na Li
    Wei Tan
    Advances in Difference Equations, 2016
  • [37] Evidence of q-exponential statistics in Greek seismicity
    Antonopoulos, Chris G.
    Michas, George
    Vallianatos, Filippos
    Bountis, Tassos
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 : 71 - 77
  • [38] Another addition theorem for the q-exponential function
    Suslov, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : L375 - L380
  • [39] Two generalized q-exponential operators and their applications
    Li, Nadia Na
    Tan, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 14
  • [40] A STUDY ON q-SPECIAL NUMBERS AND POLYNOMIALS WITH q-EXPONENTIAL DISTRIBUTION
    Kang, Jung Yoog
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 541 - 553