Robust Relative Error Estimation

被引:7
|
作者
Hirose, Kei [1 ,2 ]
Masuda, Hiroki [3 ]
机构
[1] Kyushu Univ, Inst Math Ind, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Chuo Ku, 1-4-1 Nihonbashi, Tokyo 1030027, Japan
[3] Kyushu Univ, Fac Math, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
gamma-divergence; relative error estimation; robust estimation; VARIABLE SELECTION; DIVERGING NUMBER; REGULARIZATION; LIKELIHOOD; SHRINKAGE; MODELS;
D O I
10.3390/e20090632
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Relative error estimation has been recently used in regression analysis. A crucial issue of the existing relative error estimation procedures is that they are sensitive to outliers. To address this issue, we employ the gamma-likelihood function, which is constructed through gamma-cross entropy with keeping the original statistical model in use. The estimating equation has a redescending property, a desirable property in robust statistics, for a broad class of noise distributions. To find a minimizer of the negative gamma-likelihood function, a majorize-minimization (MM) algorithm is constructed. The proposed algorithm is guaranteed to decrease the negative gamma-likelihood function at each iteration. We also derive asymptotic normality of the corresponding estimator together with a simple consistent estimator of the asymptotic covariance matrix, so that we can readily construct approximate confidence sets. Monte Carlo simulation is conducted to investigate the effectiveness of the proposed procedure. Real data analysis illustrates the usefulness of our proposed procedure.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Robust and adaptive approaches for Relative Geologic Time Estimation
    Arouna, Moctar Mounirou
    El Gheche, Mireille
    Donias, Marc
    Guillon, Sebastien
    Berthoumieu, Yannick
    JOURNAL OF APPLIED GEOPHYSICS, 2018, 159 : 157 - 172
  • [32] Robust estimation of error scale in nonparametric regression models
    Ghement, Isabella Rodica
    Ruiz, Marcelo
    Zamar, Ruben
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3200 - 3216
  • [33] Robust Estimation of the Mean with Bounded Relative Standard Deviation
    Huber, Mark
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 271 - 284
  • [34] Accurate Robust and Efficient Error Estimation for Decision Trees
    Fan, Lixin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [35] Estimation and exclusion of multipath range error for robust positioning
    Tatsuya Iwase
    Noriyoshi Suzuki
    Yusuke Watanabe
    GPS Solutions, 2013, 17 : 53 - 62
  • [36] Robust estimation of the fundamental matrix based on an error model
    Zhong, HX
    Feng, YP
    Pang, YJ
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 5082 - 5087
  • [37] Robust estimation under error cross section dependence
    Moscone, F.
    Tosetti, Elisa
    ECONOMICS LETTERS, 2015, 133 : 100 - 104
  • [38] Fast robust estimation of prediction error based on resampling
    Khan, Jafar A.
    Van Aelst, Stefan
    Zamar, Ruben H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3121 - 3130
  • [39] Robust State Estimation Using Error Sensitivity Penalizing
    Zhou, Tong
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 2563 - 2568
  • [40] Moving horizon estimation: Error dynamics and bounding error sets for robust control
    Voelker, Anna
    Kouramas, Konstantinos
    Pistikopoulos, Efstratios N.
    AUTOMATICA, 2013, 49 (04) : 943 - 948