Holocene erosion triggered by climate change in the central Loess Plateau of China

被引:16
|
作者
Liu, Gang [1 ,2 ,3 ]
Hu, Feinan [1 ]
Elbasit, Mohamed A. M. Abd [4 ]
Zheng, Fenli [1 ,2 ,3 ]
Liu, Puling [1 ,2 ,3 ]
Xiao, Hai [1 ]
Zhang, Qiong [1 ]
Zhang, Jiaqiong [1 ,2 ,3 ]
机构
[1] Northwest A&F Univ, Inst Soil & Water Conservat, State Key Lab Soil Eros & Drylond Fanning Loess P, Yangling 712100, Peoples R China
[2] Chinese Acad Sci, Inst Soil & Water Conservat, Yangling 712100, Peoples R China
[3] Minist Water Resources, Yangling 712100, Peoples R China
[4] Agr Res Council, Inst Soil Climate & Water, Private Bag X79, ZA-0001 Pretoria, South Africa
基金
中国科学院西部之光基金;
关键词
Radiocarbon dating; Holocene climate; Historical erosion; Net primary productivity; Rainfall erosivity; SOIL ORGANIC-MATTER; MAGNETIC-SUSCEPTIBILITY; HIGH-RESOLUTION; VEGETATION; RECONSTRUCTIONS; PRECIPITATION; ACCUMULATION; QUATERNARY; DYNAMICS; RECORDS;
D O I
10.1016/j.catena.2017.09.013
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Understanding changes in Holocene erosion is essential for predicting soil erosion in the future. However, the quantitative response of natural erosion to Holocene climate change is limited for the Loess Plateau of China. In this study, two soil profiles were investigated on the Luochuan and Yanchang sites in the central Loess Plateau of China; and four climate indicators, i.e. magnetic susceptibility, calcium carbonate content, total organic carbon content, and clay content (< 0.005 mm), were analyzed to describe climate change. The equations fitted using modern pedogenic susceptibility, precipitation, and temperature were used to quantitatively reconstruct paleoprecipitation and paleotemperature in the Holocene. The current relationship between soil erosion intensity and precipitation was determined and used to estimate historical erosion. Results indicated that climate was coldest and driest between 12,000 and 8500 cal. yr BP, and became wanner and wetter during 8500 to 5500 cal. yr BP. The warmest and wettest climate was from 5500 to 3000 cal. yr BP and was getting colder and dryer over the last 3000 years. Holocene erosion intensity changed with fluctuation of mean annual precipitation, and these changes were different on both sites. The peak erosion values were 20,966 t.km(-2.)yr(-1) in 7500 cal. yr BP and 21,148 t.km(-2.)yr(-1) in 3300 cal. yr BP on the Luochuan and Yanchang sites, respectively. Furthermore, more severe soil erosion with a faster increase was estimated on the Yanchang site than Luochuan site with a range between 6547 and 11,177 t.km(-2.)yr(-1) during the last 1800 years. This study proposed a new method to quantify historical soil erosion triggered by climate change, which not only can derive detailed soil erosion intensity change with variation of climate, but also provide a way to compare soil losses between different areas.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 50 条
  • [21] ASSESSING THE IMPACT OF CLIMATE CHANGE ON SOIL WATER BALANCE IN THE LOESS PLATEAU OF CHINA
    Li, Zhi
    Liu, Wenzhao
    Zhang, Xunchang
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE II, VOLUME 2, 2009, 295 : 871 - +
  • [22] Mechanisms of climate change impacts on vegetation and prediction of changes on the Loess Plateau, China
    Gou, Yongcheng
    Jin, Zhao
    Kou, Pinglang
    Tao, Yuxiang
    Xu, Qiang
    Zhu, Wenchen
    Tian, Haibo
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (08)
  • [23] Farmers' perceived efficacy of adaptive behaviors to climate change in the Loess Plateau, China
    Shi, Xingmin
    Sun, Lifan
    Chen, Xieyang
    Wang, Lu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 697
  • [24] Vegetation dynamics and climate change on the Loess Plateau, China: 1982-2011
    Xie, Baoni
    Jia, Xiaoxu
    Qin, Zhanfei
    Shen, Jian
    Chang, Qingrui
    REGIONAL ENVIRONMENTAL CHANGE, 2016, 16 (06) : 1583 - 1594
  • [25] Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China
    Zhang, XC
    Liu, WZ
    AGRICULTURAL AND FOREST METEOROLOGY, 2005, 131 (3-4) : 127 - 142
  • [26] Assessment of soil erosion risk on the Loess Plateau, China
    Liu, Gang
    Xu, Wennian
    Liu, Puling
    Yang, Mingyi
    Cai, Chongfa
    Zhang, Qiong
    Xia, Zhenyao
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (3-4): : 1568 - 1571
  • [27] Erosion caused by hyperconcentrated flow on the Loess Plateau of China
    Xu, JX
    CATENA, 1999, 36 (1-2) : 1 - 19
  • [28] MODELING OF INTERRILL EROSION INTHE LOESS PLATEAU OF CHINA
    Zhanbin LI
    Mingan SHAO
    & Zhanli WANG
    Bing SHEA (Institute of Soil and Water Conservation
    InternationalJournalofSedimentResearch, 1999, (02) : 319 - 324
  • [29] Holocene climate changes over the desert/loess transition of north-central China
    Xiao, J
    Nakamura, T
    Lu, HY
    Zhang, GY
    EARTH AND PLANETARY SCIENCE LETTERS, 2002, 197 (1-2) : 11 - 18
  • [30] Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China
    Xiubin He
    Jie Zhou
    Xinbao Zhang
    Keli Tang
    Regional Environmental Change, 2006, 6 : 62 - 70