Medical Image Classification using Pre-trained Convolutional Neural Networks and Support Vector Machine

被引:2
|
作者
Ahmed, Ali [1 ]
机构
[1] King Abdulaziz Univ Rabigh, Rabigh 21589, Saudi Arabia
关键词
Pre-trained convolution neural networks; medical image classification; support vector machine;
D O I
10.22937/IJCSNS.2021.21.6.1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, pre-trained convolutional neural network CNNs have been widely used and applied for medical image classification. These models can utilised in three different ways, for feature extraction, to use the architecture of the pre-trained model and to train some layers while freezing others. In this study, the ResNet-18 pre-trained CNNs model is used for feature extraction, followed by the support vector machine for multiple classes to classify medical images from multi-classes, which is used as the main classifier. Our proposed classification method was implemented on Kvasir and PH2 medical image datasets. The overall accuracy was 93.38% and 91.67% for Kvasir and PH2 datasets, respectively. The classification results and performance of our proposed method outperformed some of the related similar methods in this area of study.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets
    Spolaor, Newton
    Lee, Huei Diana
    Mendes, Ana Isabel
    Nogueira, Conceicao Veloso
    Sabino Parmezan, Antonio Rafael
    Resende Takaki, Weber Shoity
    Rodrigues Coy, Claudio Saddy
    Wu, Feng Chung
    Fonseca-Pinto, Rui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27305 - 27329
  • [22] Side-Scan Sonar Image Classification Based on Style Transfer and Pre-Trained Convolutional Neural Networks
    Ge, Qiang
    Ruan, Fengxue
    Qiao, Baojun
    Zhang, Qian
    Zuo, Xianyu
    Dang, Lanxue
    ELECTRONICS, 2021, 10 (15)
  • [23] Object detection and classification of butterflies using efficient CNN and pre-trained deep convolutional neural networks
    R. Faerie Mattins
    M. Vergin Raja Sarobin
    Azrina Abd Aziz
    S. Srivarshan
    Multimedia Tools and Applications, 2024, 83 : 48457 - 48482
  • [24] Transfer Learning for Mammogram Classification Using Pre-Trained Convolutional Neural Network
    Yasuda, K.
    Tsuru, H.
    Ohki, M.
    MEDICAL PHYSICS, 2017, 44 (06) : 3102 - 3102
  • [25] Object detection and classification of butterflies using efficient CNN and pre-trained deep convolutional neural networks
    Mattins, R. Faerie
    Sarobin, M. Vergin Raja
    Aziz, Azrina Abd
    Srivarshan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 48457 - 48482
  • [26] An Approach of Transferring Pre-trained Deep Convolutional Neural Networks for Aerial Scene Classification
    Devi, Nilakshi
    Borah, Bhogeswar
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 551 - 558
  • [27] Performance Investigation of Pre-Trained Convolutional Neural Networks in Olive Leaf Disease Classification
    Dikici, Bunyamin
    Bekciogullari, Mehmet Fatih
    Acikgoz, Hakan
    Korkmaz, Deniz
    KONYA JOURNAL OF ENGINEERING SCIENCES, 2022, 10 (03): : 535 - 547
  • [28] Classification of Chronic Obstructive Pulmonary Disease using CT Images and Pre-trained Convolutional Neural Networks
    Rezvanjou, Sara
    Moslemi, Amir
    Tan, Wan-Cheng
    Hogg, James C.
    Bourbeau, Jean
    Kirby, Miranda
    MEDICAL PHYSICS, 2022, 49 (08) : 5682 - 5682
  • [29] Optimized classification of dental implants using convolutional neural networks and pre-trained models with preprocessed data
    Reza Ahmadi Lashaki
    Zahra Raeisi
    Nasim Razavi
    Mehdi Goodarzi
    Hossein Najafzadeh
    BMC Oral Health, 25 (1)
  • [30] Transfer learning with pre-trained deep convolutional neural networks for serous cell classification
    Baykal, Elif
    Dogan, Hulya
    Ercin, Mustafa Emre
    Ersoz, Safak
    Ekinci, Murat
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 15593 - 15611