Classification of breast cancer histology images using MSMV-PFENet

被引:11
|
作者
Liu, Linxian [1 ,2 ]
Feng, Wenxiang [1 ]
Chen, Cheng [2 ]
Liu, Manhua [2 ]
Qu, Yuan [2 ,3 ]
Yang, Jiamiao [2 ,3 ,4 ]
机构
[1] Shanxi Univ, Sch Automat & Software Engn, Taiyuan 030006, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Marine Equipment, Shanghai 200240, Peoples R China
[4] Shanghai Ctr Brain Sci & Brain Inspired Technol, Shanghai 200031, Peoples R China
关键词
D O I
10.1038/s41598-022-22358-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning has been used extensively in histopathological image classification, but people in this field are still exploring new neural network architectures for more effective and efficient cancer diagnosis. Here, we propose multi-scale, multi-view progressive feature encoding network (MSMV-PFENet) for effective classification. With respect to the density of cell nuclei, we selected the regions potentially related to carcinogenesis at multiple scales from each view. The progressive feature encoding network then extracted the global and local features from these regions. A bidirectional long short-term memory analyzed the encoding vectors to get a category score, and finally the majority voting method integrated different views to classify the histopathological images. We tested our method on the breast cancer histology dataset from the ICIAR 2018 grand challenge. The proposed MSMV-PFENet achieved 93.0% and 94.8% accuracies at the patch and image levels, respectively. This method can potentially benefit the clinical cancer diagnosis.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Classification of Breast Cancer Histology Images Through Transfer Learning Using a Pre-trained Inception Resnet V2
    Ferreira, Carlos A.
    Melo, Tania
    Sousa, Patrick
    Meyer, Maria Ines
    Shakibapour, Elham
    Costa, Pedro
    Campilho, Aurelio
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 763 - 770
  • [42] Breast Cancer Classification in Histopathological Images using Convolutional Neural Network
    Al Rahhal, Mohamad Mahmoud
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 64 - 68
  • [43] Automated breast cancer detection and classification using ultrasound images: A survey
    Cheng, H. D.
    Shan, Juan
    Ju, Wen
    Guo, Yanhui
    Zhang, Ling
    PATTERN RECOGNITION, 2010, 43 (01) : 299 - 317
  • [44] Breast Cancer Classification using Global Discriminate Features in Mammographic Images
    Tariq, Nadeem
    Abid, Beenish
    Qadeer, Khawaja Ali
    Hashim, Imran
    Ali, Zulfiqar
    Khosa, Ikramullah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (02) : 381 - 387
  • [45] A hybrid lightweight breast cancer classification framework using the histopathological images
    Addo, Daniel
    Zhou, Shijie
    Sarpong, Kwabena
    Nartey, Obed T.
    Abdullah, Muhammed A.
    Ukwuoma, Chiagoziem C.
    Al-antari, Mugahed A.
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2024, 44 (01) : 31 - 54
  • [46] Classification of Breast Cancer Histopathology Images using Texture Feature Analysis
    Belsare, A. D.
    Mushrif, M. M.
    Pangarkar, M. A.
    Meshram, N.
    TENCON 2015 - 2015 IEEE REGION 10 CONFERENCE, 2015,
  • [47] A computational classification method of breast cancer images using the VGGNet model
    Khan, Abdullah
    Khan, Asfandyar
    Ullah, Muneeb
    Alam, Muhammad Mansoor
    Bangash, Javed Iqbal
    Suud, Mazliham Mohd
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [48] Breast cancer images Classification using a new transfer learning technique
    Mukhlif A.A.
    Al-Khateeb B.
    Mohammed M.A.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 167 - 180
  • [49] Classification of breast cancer mammogram images using convolution neural network
    Albalawi, Umar
    Manimurugan, S.
    Varatharajan, R.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (13):
  • [50] Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning
    Wakili, Musa Adamu
    Shehu, Harisu Abdullahi
    Sharif, Md. Haidar
    Sharif, Md. Haris Uddin
    Umar, Abubakar
    Kusetogullari, Huseyin
    Ince, Ibrahim Furkan
    Uyaver, Sahin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022